Strongly Coupled Theories of the TeV Scale

Gustavo Burdman

University of São Paulo

ICHEP08, Philadelphia, July 29 - August 5 2008

- 4 同 2 4 日 2 4 日 2

Outline

1 Why we need to go beyond the SM

- The Standard Model
- The Stability of the Weak Scale
- 2 Strong Dynamics and the TeV Scale
 - QCD-like Strong Dynamics
 - A New View of Strong Dynamics: the AdS/CFT Correspondence

3 Models of EWSB in AdS₅

- Solving the Hierarchy Problem in AdS₅
- Models of EWSB and Fermion Masses in AdS₅

4 Summary/Outlook

/□ ▶ < 글 ▶ < 글

The Standard Model The Stability of the Weak Scale

The great success of the SM

The Standard Model success

The SM Higgs is light

m_h < 190 GeV @ 95% C.L.

<ロト <部ト < 注ト < 注ト

The Standard Model The Stability of the Weak Scale

The Stability of the Weak Scale

But if Higgs elementary scalar quantum corrections drive m_h up

$$\delta m_h^2 \sim \frac{c^2}{16\pi^2} \Lambda^2$$

- We need \Rightarrow $m_h \lesssim 1$ TeV
- But if $\Lambda \to M_P \sim 10^{19}~GeV$, unnatural

 \Rightarrow Gauge Hierarchy Problem

< ロ > < 同 > < 回 > < 回 >

The Standard Model The Stability of the Weak Scale

Mechanism to Stabilize the Weak Scale

Need a mechanism to keep v and M_P separate.

New physics at $\Lambda \sim 1$ TeV is:

Weakly Coupled

- SM with a light Higgs
- SUSY (MSSM, NMSSM, Folded, ...)
- Little Higgs, Twin Higgs

LED, UED

Strongly Coupled

- Technicolor, Walking Technicolor
- Topcolor, Top See Saw

・ロト ・同ト ・ヨト ・ヨト

- Composite Higgs
- Randall-Sundrum

QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Strong Dynamics at the TeV Scale

Analogy with QCD:

- New Strong Interaction: Technicolor
- Strong at $M_W \ll M_P$
- Breaks Electroweak symmetry: $\langle \overline{F}F \rangle \neq 0$

QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

伺 ト イヨト イヨト

Strong Dynamics at the TeV Scale

TC Problem I: Fermion Masses

• Need Extended Technicolor (ETC): $G_{\rm ETC} \supset G_{\rm TC}$ with $\Lambda_{\rm ETC} \gg \Lambda_{\rm TC}$

$$m_f \simeq rac{g_{
m ETC}^2}{\Lambda_{
m ETC}^2} \left< ar{F} F \right>$$

- Needs Walking (Walking TC): For heavier fermions (e.g. m_c, m_τ) needs to enhance $\langle \bar{F}F \rangle$
- But *m_t* requires Λ_{ETC} too low
 ⇒ Topcolor, Top See Saw (Hill, Dobrescu)

QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

・ 同 ト ・ ヨ ト ・ ヨ ト

Strong Dynamics at the TeV Scale

TC Problems II: Electroweak Precision Constraints

• E.g. Techni-fermions give

$$S \sim \frac{N}{6\pi}$$

But

$$S^{exp.} \leq 0.1$$

QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

(日) (同) (三) (三)

Strong Dynamics and AdS/CFT

AdS/CFT Correspondence (Maldacena):

• Originally:

 $\mathsf{AdS}_5 \times \mathit{S}^5$ String Theory $\leftrightarrow \mathcal{N} = 4 \mbox{ 4D SU(N)}$ Theory (CFT)

- In general: Assume 5D theory in AdS₅ ↔ 4D CFT (Arkani-Hamed, Porrati, Randall)
- Need

$$g^2 N \gg 1$$

to ignore string corrections.

ullet \Rightarrow Holographic dual is 4D strongly coupled theory

QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

(日) (同) (三) (三)

Strong Dynamics from a Slice of AdS₅

Ingredients to build Strongly Coupled Theories in AdS₅

- UV cutoff in the 4D Theory \leftrightarrow UV ("Planck") boundary
- Break 4D Conformal Invariance in the IR \leftrightarrow IR boundary
- 4D Strongly Coupled Gauge Theory described by 5D Weakly Coupled Theory

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Solving the Hierarchy Problem in AdS₅

Metric in extra dimension \Rightarrow small energy scale from M_P (Randall-Sundrum)

$$ds^2=e^{-2\kappa|y|}\,\eta^{\mu
u}dx_\mu dx_
u-dy^2$$

Corrections to m_h OK If Higgs close to TeV brane

Need Higgs IR localization

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Bulk AdS₅ Models

Allowing Gauge and Matter fields in 5D bulk (Gherghetta-Pomarol, Grossman-Neubert)

- Avoid effects of Higher Dimensional Operators only suppressed by IR/TeV scale
- Natural Models of Flavor: Zero-mode fermion localization ↔ fermion mass

$$M_f^{(5D)} = ck, \quad c \simeq O(1)$$

/□ ▶ < 글 ▶ < 글

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Fermion Masses in Bulk RS Models

• *O*(1) flavor breaking in bulk can generate fermion mass hierarchy:

TeV localization \rightarrow larger Yukawas, Planck localization \rightarrow suppressed Yukawas.

• Heavier fermions couple stronger to gauge KK modes:

- $G^{(1)} \rightarrow t\bar{t}$ dominates
- Tree-level flavor violation

| 4 同 🕨 🖌 🖉 🖿 🖌 🗐

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

The Bulk RS Picture

Models of EWSB *and* Flavor

• EWPC: T OK, but $S \simeq N/\pi$ at tree-level

$$M_{KK} \gtrsim (2-3) {
m TeV}$$

- Z → b̄b require discrete symmetry (L ↔ R) (Agashe, Contino, Da Rold, Pomarol)
- Potentially important bounds and/or effects from flavor violation

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Dynamical Origin of the Higgs Sector

What localizes the Higgs to/near the IR/TeV brane ?

- Gauge-Higgs Unification
- Zero-mode Fermion Condensation
- Higgsless

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Gauge-Higgs Unification in AdS₅

Extract H from a 5D gauge field

- $A^a_M \rightarrow (A^a_\mu, A^a_5)$
- Bulk Gauge group:
 - $G_{\text{bulk}} \supset G_{\text{SM}}$
 - Needs to include custodial symmetry.
- Minimal model (Agashe, Contino, Pomarol): $SO(5) \times U(1) \longrightarrow SO(4) \times U(1)$ by BCs
- Higgs is 4 of SO(4): 4 d.o.f. \leftrightarrow complex $SU(2)_L$ doublet
- *H* localized near TeV brane.
 m_h protected by bulk gauge symmetry (*H* pseudo-NGB)

・ロト ・同ト ・ヨト ・ヨト

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Fermion Condensation

Fourth-Generation Condensation in AdS₅ (G.B. Da Rold)

- $\bullet\,$ Fourth Generation in the AdS_5 bulk
- $\bullet\,$ Choose zero-mode fermions IR localized \Rightarrow strongly coupled to KK gauge bosons

- E.g. KK gluon exchange $\longrightarrow \langle \bar{\boldsymbol{U}} \boldsymbol{U} \rangle \neq 0$
 - EWSB
 - $m_U^{(0)} \sim (600 700)$ GeV (ala Bardeen-Hill-Lindner)
 - Heavy Higgs: $m_h \simeq (600 900)$ GeV

《曰》《聞》 《臣》 《臣》

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Fermion Condensation (cont.)

• All other fermion masses: Bulk higher dimensional operators

$$\frac{C^{ijk\ell}}{M_P^3} \bar{\Psi}_L^i(x,y) \Psi_R^j(x,y) \bar{\Psi}_R^k(x,y) \Psi_L^\ell(x,y)$$

- Phenomenology dominated by 4th generation
 - $V^{(1)} \rightarrow \overline{U}U$ (broader KK gauge bosons)
 - Flavor physics: E.g. new sources of CPV in mixing,
 - Additional contributions to S, T

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Higgsless Models

Higgsless RS Bulk Models (Csaki, Grojean, Murayama, Pilo, Terning)

- Boundary Condition breaking $SU(2)_L \times SU(2)_R \times U(1)_X \rightarrow U(1)_{EM}$
- IR localized mass terms \Rightarrow fermion masses
- Kaluza-Klein modes of gauge fields unitarize amplitudes. \Rightarrow KK modes "light": $M_{KK} \lesssim 1$ TeV
- Phenomenology in the Gauge boson sector:
 - $V_L V_L$ scattering
 - Sum Rules
- Corresponds to Walking Technicolor Models

ロト (得) (ヨ) (ヨ)

Summary/Outlook

<ロ> <同> <同> < 回> < 回>

æ

Summary/Outlook

• TeV Scale could be a window to new strong interactions

<ロト <部ト < 注ト < 注ト

э

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics

(日) (同) (三) (三)

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor

- 4 同 6 4 日 6 4 日 6

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV

- 4 同 6 4 日 6 4 日 6

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory
- Models and Signals defined by mechanism of Higgs localization, flavor

- 4 同 6 4 日 6 4 日 6

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory
- Models and Signals defined by mechanism of Higgs localization, flavor
- If LHC reveals Strongly Coupled TeV scale
 ⇒ Model Building in AdS₅ should be a useful tool

- 4 同 6 4 日 6 4 日 6