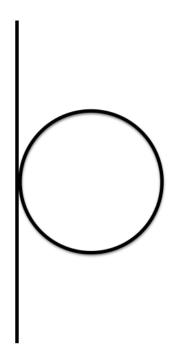

Eletromagnetismo I – Lista 10

Eletrodinámica


1. Uma espiral metálica (com distância h constante entre as spiras) e um número total N de spiras é colocada em um campo magnético uniforme $B = B_0 \cos(\omega t)$ perpendicular ao plano da spiral. Calcule a força eletromotiva total induzida na espiral (entre os pontos $A \in B$). Você pode assumir que $N \gg 1$.

- 2. Uma spira circular condutora feita com um fio de diámetro d, resistividade ρ e densidade de massa ρ_m cai de uma grande altura em um campo magnético com uma componente $B_z = B_0(1 + \kappa z)$, com κ constante. A spira tem diámetro D e fica sempre paralela ao plano xy. Disprezando a resistência do ar, calcule a velocidade final da spira.
- 3. Um disco condutor de raio a é colocado em um campo magnético constante B perpendicular ao plano do disco. Dois contactos "sliding" C_1 e C_2 conectam o bordo do disco com o eixo de rotação. Uma corrente é produzida quando o disco roda com velocidade angular ω . Uma torque é produzida por uma massa M enrolada em torno do perímetro do disco.
 - (a) Explique como e por que a corrente flui, fornecendo uma explicação eurística da dipendência da corrente com ω .
 - (b) Se a corda for muito comprida o sistema vai alcançar uma velocidade angular constante ω_f . Ache ω_f e a corrente asociada.

4. Um fio condutor circular de raio a é insulado de um fio rectilíneo infinitamente comprido na direção tangencial. Calcule a indutância mútua.

5. Para os corajosos: Verifique explicitamente (fazendo a integral, possivelmente com Mathematica) o "Gauss linking number" em um caso de sua escolha.