
Eletromagnetismo 2 – Lista 4

O campo escalar, III

Let’s consider a theory of a real scalar field in two dimensions (1 time + 1 space), with

Lagrangian density given by

L =
1

2
∂µφ ∂

µφ− 1

2
m2φ2 −

∞∑
n=3

λn
n!
φn .

What is the scaling dimension of φ in two spacetime dimensions? You can deduce this

from S =
∫
d2xL, remembering that S has to be dimensionless in units of ~ = 1. What does

this imply about the nature of the coupling constants λn? Are they relevant, irrelevant or

marginal?

Let’s consider now the scattering amplitudes A2→n for the tree-level processes in which

2 initial particles go into n ≥ 2 final particles, like in this figure:

The arrows in the lines are meant to show the direction in which the momentum flows, and

do not distinguish between particles and antiparticles like in the scalar Yukawa theory seen

in class (sorry for the change of notation!).

One can adopt the useful convention that all particles are taken to be incoming, with the

understanding that in the end all but two particles are crossed to be outgoing. This means

that all the momenta are taken to be incoming, like this:
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It is convenient to go to light-cone coordinates and write the momentum of the i−th

particle as (p+i , p
−
i ) = (p0i + p1i , p

0
i − p1i ) in terms of a single real parameter ai as

pi = (mai,m/ai) .

This guarantess the mass-shell condition p+i p
−
i = m2. Understand this point (you need to

understand how the Minkowski metric ηµν =

(
1 0

0 −1

)
is rewritten in light-cone coordinates).

From now on, we can set m = 1 to simplify expressions.

How do write energy and momentum conservation in terms of the ai’s?

Convince yourself that the propagator for a particle carrying momentum p =
∑

i pi is

given by

G(p) =
1

p2 − 1
=

1

(
∑

i ai)
(∑

j 1/aj

)
− 1

.

Remember we have set m = 1.

The scope of this exercise is now to check whether we can choose the coupling λn appro-

priately and cancel all processes of particle production. In other words, we want A2→n≥3 = 0.

For example, the (tree-level) processes contributing to A2→3 are given by the diagrams in

this figure:

The first diagram contains λ3 only, the second diagram λ3 and λ4, and the last diagram is

essentially given by λ5, namely it is momentum independent. Check that you can fix λ4 in

terms of λ3 in a way that the sum of the first two diagrams becomes constant. You can now

eliminate these two diagrams by fixing λ5 to be minus that constant. What are λ4 and λ5?

Now we want to generalize this to n > 3 and find what are the other couplings λn≥6 in

terms of λ3. This can be done recursively, using a clever choice of momenta.

Let’s change notation a bit, remembering of our convention of taking all particles to be

incoming. We consider an amplitude of n particles: n = 4 would be 2→ 2 scattering, n = 5

would be 2→ 3 scattering and so on. We want then to cancel all amplitudes with n ≥ 5.

All tree-level diagrams for n particles, except for the constant one equal to λn, can be

factorized in a left blob and a right blob connected by a propagator

GL→R =
1(∑

i∈L ai
) (∑

j∈L 1/aj

)
− 1

. (1)
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This allows to pick a convenient choice of momenta which simplifies the evaluation of the

recursive relations among the λn’s. This convenient choice turns out to be

a = {a1(x), 1, x, x2, . . . , xn−3, an(x)} , (2)

with ai(x) and an(x) being determined by the conservation of energy and momentum you’ve

written down above. In the limit of x→∞,

a1(x) = −1 +O(1/x) , an(x) = −xn−3 (1 +O(1/x)) , (3)

and one can check that

GL→R =

{
−1, if aLj = (a1, a2, . . . , ak), a

R
j = (ak+1, ak+2, . . . , an)

0, otherwise
,

that is, only the diagrams where the particles are ordered contribute. To see this, it is

sufficient to evaluate a few cases. For example, the set aLj = {a2, a3} gives a vanishing

propagator and it is easy to see that any other set of two or more momenta not including a1
goes to zero as well. Similarly, the set aLj = {a1, ai≥3} also gives zero. On the other hand,

the set aLj = {a1, a2} yields −1. By adding ai≥4 to this set, we get zero again. The only case

left to analyze is if an ordered set of any size continues to converge to −1, which it does.

An important consequence is that only ordered line-type diagrams survive, as shown

pictorially in this figure for the case of six particles:

This diagram seems to be non-vanishing since it is ordered for the cuts A and B. However,

for the cut C it is aLj = {a3, a4}, which implies that this diagram does in fact vanish. In

general, only (ordered) line-type diagrams survive the large x limit.

After these considerations, one is ready to compute the amplitude A2→n−2. It is useful

to start thinking about the diagram that has λn−k as its rightmost vertex. This diagram

factorizes into the form A2→k · λn−k. Check that imposing A2→k to vanish, one gets the

recursion relation

A2→n−2 = −λ3λn−1 + (λ3)
2λn−2 − λ4λn−2 + λn = 0 .

This can be solved by setting λn = γn, writing a generic combination of the two roots, and

imposing consistency with the expression for λ4 in terms of λ3 that you’ve derived above.
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After you’ve obtained the expression for a generic λn in terms of λ3, plug this in the potential

in L and resum. You should end up with

L =
1

2
∂µφ∂

µφ− 1

6λ23

(
2e−λ3φ + e2λ3φ − 3

)
.

This is called Bullough-Dodd model and it is a famous example of an integrable model. One

of the characteristics of integrable models is that they do not produce particles. In a sense,

we have rediscovered the existence of this model from first principles, by imposing absence

of particle production in the scattering processes.

Repeat the same kind of analysis for the case of a real scalar field, like in L above, but

with a Z2 symmetry: the Lagrangian now has to be invariant under φ → −φ. You should

find that the final Lagrangian is

L =
1

2
∂µφ∂

µφ− 1

λ4
(cosh (

√
λ4φ)− 1) .

This is called the cosh-Gordon model and is another famous example of integrable theory in

two dimensions.

You can read more about this subject of integrable models and exact S-matrices in the

beatiful review by P. Dorey:

https://arxiv.org/pdf/hep-th/9810026.pdf.
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