Lista de Exercícios 2

- 1. Um cilindro condutor de raio R e densidade linear de carga λ está inserido em um meio dielétrico de constante ϵ , onde está presente um campo externo \vec{E} perpendicular a direção do cilindro. Calcule o campo elétrico \vec{E} e o campo \vec{D} em todo o espaço.
- 2. Dois meios dielétricos de constante dielétrica ϵ_1 e ϵ_2 respectivamente estão conectados por um plano infinito, de modo que à direita está o meio ϵ_1 , e à esquerda o meio ϵ_2 . Eles tem em seus interiores campos elétricos constantes e diferentes em cada meio, isto é \vec{E}_1 e \vec{E}_2 respectivamente, formando ângulos θ_1 e θ_2 com a normal ao plano de separação. Calcule a relação entre θ_1 e θ_2 . Sugestão: prove que o campo elétrico tangencial ao plano de separação é o mesmo em cada lado, e que o campo \vec{D} normal a superfície de separação é o mesmo em cada lado.
- 3. Um capacitor cilíndrico é formado por duas cascas condutoras cilíndricas de altura h, uma com raio R₁ e outra com raio R₂. O capacitor está com carga total Q (isto é Q em uma placa e -Q em outra). O capacitor é colocado verticalmente sobre um líquido dielétrico de permeabilidade ε, densidade de massa ρ e em uma região com aceleração da gravidade igual a g. Calcule a altura até onde sobe o líquido no interior do capacitor.
- 4. Consideremos agora um capacitor ligado a uma bateria, ou seja, o potencial é constante, ao invés da carga. Neste caso, o trabalho realizado pela força elétrica é $dW = dW_b dU$, onde dW_b é o trabalho da bateria, enqanto $dW = \vec{F} \cdot d\vec{x}$ é o trabalho da força elétrica, e dU a variação da energia. O trabalho da bateria para potencial constante é $dW_b = \sum_i \varphi \delta Q_i$, que é o dobro da variação de energia. Portanto a força é $\vec{F} = +\nabla U$. Com base em tal resultado faça o problema 3 para uma diferença de potencial V constante (e não Q sendo constante).
- 5. Uma carga q é colocada no centro de uma casca esférica de raio interno R_1 e raio externo R_2 , de constante dielétrica ϵ . Calcule o campo elétrico em todos os pontos do espaço.

- 6. Duas placas paralelas de metal distam uma da outra x, sendo preenchido o volume intermediário por dois materiais, em duas camadas, de espessuras x_1 e x_2 ($x_1+x_2=x$, condutividades σ_1 e σ_2 , e permeabilidades ϵ_1 e ϵ_2 , respectivamente). Espere o sistema chegar ao limite estacionário, e calcule a densidade de cargas que fica no plano de separação entre as diferentes camadas, assim como a corrente que passa de um plano condutor a outro, supondo-se que os mesmos estejam submetidos a uma diferença de potencial constante V.
- 7. Calcule o campo elétrico produzido por uma esfera uniformente polarizada (o vetor de polarização é \vec{P} , conhecido e constante— **note que** este meio não é linear, \vec{P} independe do campo externo) de raio R.
- 8. Uma esfera constituída por material dielétrico linear e homogêneo, cuja constante dielétrica é ϵ_r , é colocada num campo elétrico uniforme \vec{E}_0 . Calcule o campo elétrico dentro de tal esfera.
- 9. Um meio dielétrico está em um campo uniforme \vec{E}_0 . Uma cavidade esférica de raio a é formada no meio.
 - a) Encontre o potencial dentro e fora da cavidade.
 - b) Encontre a carga superficial que aparece sobre a cavidade.
- 10. Um condutor cilíndrico tem raio b, comprimento L e condutividade σ_1 . No centro do resistor há um defeito esférico de raio a cuja condutividade é σ_2 . A corrente de entrada e de saída são uniformemente distribuídas na seção reta do resistor.
 - a) Qual é a resistência do resistor se $\sigma_1 = \sigma_2$?
 - b) Qual é a variação da resistência até 1^a ordem em $(\sigma_1 \sigma_2)$ se $\sigma_1 \neq \sigma_2$ [para este cálculo considere o defeito como um cilindro de raio a e comprimento a situado no centro do resistor com o eixo paraleo ao do resistor.]
 - c) Calcule a densidade de corrente na esfera quando $L \to \infty, b \to \infty$ e $J = J_o \hat{K}$ nos terminais do resistor.