14 de agosto de 2006

Exercícios-1

- 1. Mostre que $\nabla \wedge \nabla \wedge \vec{E} = \nabla(\nabla \cdot \vec{E}) \nabla^2 \vec{E}$.
- 2. Mostre que $\vec{a} \wedge (\vec{b} \wedge \vec{c}) = \vec{a} \cdot \vec{c}\vec{b} \vec{a} \cdot \vec{b}\vec{c}$.
- 3. Calcule o potencial eletrostático em todo o espaço gerado por uma esfera de raio R com carga Q uniformemente distribuída. Efetuar o cálculo através do teorema de Gauss, assim como por integração direta.
- 4. Calcule o potencial eletrostático em todo o espaço gerado por um fio finito de comprimento L. Ache então o potencial para $L \to \infty$. Compare com o resultado obtido através da lei de Gauss.
- 5. Numa região do espaço onde o campo elétrico é constante e de valor \vec{E}_0 coloca-se uma esfera condutora de raio R. Calcular o potencial em todo o espaço.
- 6. Em um condutor é feito um buraco de raio R, e coloca-se um dipolo de momento p conhecido, no centro do buraco. Calcule o potencial eletrostático no interior do buraco.
- 7. Uma carga é colocada em frente a um diedro condutor infinito com 90^{0} de abertura, a uma posição (x_{0}, y_{0}) dos planos. Calcule o potencial através do método das imagens.
- 8. Um fio infinito de densidade de cargas por unidade de comprimento λ é colocado paralelamente a uma distância d do plano. Calcule o potencial em todo o espaço, assim como a expressão para o campo elétrico.
- 9. Numa região do espaço onde o campo elétrico é constante e de valor \vec{E}_0 coloca-se um cilindro condutor de raio ρ_0 perpendicularmente ao campo \vec{E}_0 . Calcular o potencial eletrostático em todo o espaço, assim como o campo elétrico.
- 10. Uma carga q é colocada no meio de duas esferas condutoras idênticas de raio R a uma distância D>2R uma da outra. Esquematize a solução do potencial eletrostático em todo o espaço.
- 11. Uma agulha é tida como atrator de raios. Um exemplo de agulha gigantesca é o páraraios. Supondo que a solução do problema eletrostático seja relacionada a um cone condutor de abertura angular α , tente uma solução simples do problema eletrostático e interprete em termos de um pára-raios.