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Abstract

The singularity theorems proved by Penrose and Hawking between 1965 and
1970 settled a decades-long debate concerning the existence of singularities in
General Relativity. However, they are of limited applicability when the quantum
behaviour of matter is taken into account, as the Strong and Null Energy Conditions,
which these theorems require, are known (since at least the work by Epstein, Glaser
and Jaffe in 1965) not to be valid in Quantum Field Theories. Extensions of
Hawking and Penrose’s theorems with alternative energy conditions were found
as early as the late 1970s by Tipler, Roman, Wald, Yurtsever and others. But it
was not until 2011, with work by Fewster and Galloway, that singularity theorems
with energy conditions inspired by the energy inequalities that quantum fields
are believed to verify were first proved. This work was subsequently updated
by Fewster and Kontou, who in a 2019 paper showed how essentially the same
theorems could be obtained with a new, simpler strategy, which replaced the
traditional way of detecting focal points via the Raychaudhuri inequality with
a variational method. In this dissertation, we give a detailed review of these
developments in the field of singularity theorems, with particular attention to the
most recent results by Fewster and Kontou and the new mathematical approach
utilised therein.

Keywords: General Relativity, Differential Geometry, Singularity Theorems,
Quantum Energy Inequalities, Quantum Field Theory



Resumo

Os teoremas de singularidade provados por Penrose e Hawking entre 1965 e
1970 concluíram um debate de décadas a respeito da existência de singularidades
na Relatividade Geral. No entanto, sua aplicabilidade é limitada quando o com-
portamento quântico da matéria é levado em consideração: as Condições Forte
e Nula de Energia, requeridas por estes teoremas, não são válidas em Teorias
Quânticas de Campos, como se sabe desde, pelo menos, o trabalho de Epstein,
Glaser e Jaffe, em 1965. Extensões dos teoremas de Hawking e Penrose com
condições de energia alternativas vêm sendo encontradas desde o final da década
de 1970 por Tipler, Roman, Wald, Yurtsever e outros. Mas foi somente em 2011,
em trabalho de Fewster e Galloway, que apareceram pela primeira vez teoremas
de singularidade com condições de energia inspiradas pelas desigualdades do tipo
verificado por campos quânticos. Posteriormente, este trabalho foi atualizado por
Fewster e Kontou, que, em artigo de 2019, mostraram como essencialmente os
mesmos teoremas podiam ser obtidos através de uma nova e mais simples estraté-
gia, que consiste em substituir o método tradicional para detecção de pontos focais
via a desigualdade de Raychaudhuri por uma técnica variacional. Nesta disser-
tação, apresentaremos uma revisão detalhada destes desenvolvimentos no campo
dos teoremas de singularidade, com atenção especial aos resultados mais recentes
de Fewster e Kontou e aos novos métodos matemáticos ali empregados.

Palavras-Chave: Relatividade Geral, Geometria Diferencial, Teoremas de Sin-
gularidade, Desigualdades Quânticas de Energia, Teoria Quântica de Campos
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Chapter 1

Introduction

The singularity theorems published by Penrose and Hawking between 1965
and 1970 [1–5] were perhaps the most consequential developments in General
Relativity since the introduction of the theory by Einstein, in 1915. They settled
once and for all the question of the existence of singularities within the framework
of General Relativity by establishing that, under a few mild hypotheses, these were
generic features of the theory. Most crucially, their assumptions made no mention
of symmetries of the spacetime, which were frequently pointed to as the reason
why early solutions of the Einstein equations, such as the cosmological solutions
of Friedman-Lemaître-Robertson-Walker and Schwarzschild’s black hole solution,
displayed singularities.

The influence of the works of Hawking and Penrose, especially the latter, were
not limited, however, to the way General Relativity was perceived conceptually; it
also changed the way the theory was approached and worked with mathematically.
The most celebrated example of this is the formalisation of the concept of singular-
ity as geodesic incompleteness, attributed to Penrose himself. Whereas previously
the term was used broadly to describe some sort of catastrophic behaviour of a
model—usually the divergence of some curvature scalar—, Penrose’s mathemat-
ical description of singularities is more general, as the occurrence of incomplete
causal geodesics may or may not be accompanied by curvature singularities. As
other contributions of the singularity theorems to the theoretical framework of
General Relativity, one could mention the application of techniques of differential
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CHAPTER 1. INTRODUCTION 2

topology to study the causal properties of spacetime in a much more structured
way, and concepts such as trapped surfaces, which in Penrose’s theorem expresses
the notion of the “point of no return” in gravitational collapse [6].

In his 1998 review on the subject, Senovilla [7] proposes a logical structure
which singularity theorems generally follow. Namely, to prove the existence of
singularities, one needs three types of assumptions:

• Causality conditions: these exclude spacetimes with physically strange
causal properties, such as closed causal curves;

• Curvature conditions: these control the focussing of geodesics due to
gravitational effects. Using Einstein’s equation, they can be translated into
restrictions on the energy-momentum tensor of the theory, and for this reason
they are more commonly referred to as energy conditions;

• Initial conditions: these describe the rate of convergence of a family
of causal geodesics, or the extrinsic curvature of some spacelike region in
spacetime, in an initial situation.

Then, the proof makes use of the hypotheses above as follows:

1. Assuming the geodesic completeness of spacetime, the causality condition
implies that all (or at least one) of the curves in the family with which the
initial condition deals is free of focal points;

2. Using the initial condition and the energy condition, one studies the evolution
of that family of geodesics and concludes that one (or all) of its members
eventually reaches a focal point;

3. Items 1. and 2. are in contradiction; therefore, either one or more of the
hypotheses have to be discarded, or the initial assumption of geodesic com-
pleteness itself. In the latter case, the existence of a singularity is proven.

For a concrete example, we state below the Hawking and Penrose theorems to
show how their hypotheses fall within this scheme.

Theorem 1 (Hawking). Let𝑀 be a globally hyperbolic spacetime and 𝑆 a compact
Cauchy hypersurface of 𝑀 . If:
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1. Ric(𝑡, 𝑡) ≥ 0 for every timelike vector 𝑡 (i.e., the Strong Energy Condition
holds in 𝑀); and

2. The convergence 𝑘 of 𝑆 satisfies 𝑘 > 0,

then 𝑀 is future timelike geodesically incomplete.

In the statement above, the assertion that𝑀 is globally hyperbolic with compact
Cauchy surfaces is the causality condition. Naturally, the Strong Energy Condition
is the energy condition required by Hawking’s theorem. Finally, item 2 plays
the role of the initial condition (the precise definition of the convergence of a
submanifiold will be seen in Chapter 2). The Hawking theorem predicts, under
appropriate circumstances, the occurrence of a big crunch in cosmological models
(by time-reversion, assuming instead that 𝑆 has negative convergence, one obtains
past geodesically incompleteness, i.e., a big bang). Note how the conclusions do
not depend on any symmetry of 𝑀; in particular, it showed that the singularities
of FLRW models were not an artifact of the assumption of isotropy.

Theorem 2 (Penrose). Let 𝑀 be a globally hyperbolic spacetime with noncompact
Cauchy hypersurfaces. If:

1. Ric(𝑙, 𝑙) ≥ 0 for all lightlike 𝑙 (i.e., the Null Energy Condition holds); and

2. 𝑀 contains a trapped surface,

then 𝑀 is future lightlike geodesically incomplete.

In the Penrose theorem, item 1 is the energy condition, and item 2 is the initial
condition (the full definition of a trapped surface is intricate and will not concern
us at this point). The statement that 𝑀 is globally hyperbolic and its Cauchy
surfaces are noncompact is the causality condition. Penrose’s theorem deals with
gravitational collapse and the formation of black holes.

The question of whether the singularity theorems of Hawking and Penrose
can be strengthened by relaxing one or more of its hypotheses is then one that
arises naturally, and Senovilla’s scheme can be used to classify these extensions
according to which type of condition they seek to weaken. This text is concerned
exclusively with singularity theorems with alternative energy conditions, as this
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class of extensions is of pressing physical relevance. For a list of references on
work with causality and initial conditions, see [6].

In classical field theory, the Strong and Null Energy Conditions express the
positivity of energy, and are thus considered a requirement for a physically reas-
onable model. It is remarkable, however, that even some very simple classical
theories, like the nonminimally coupled Klein-Gordon field, these conditions can
be violated [8]. The situation becomes even more complicated in the quantum
setting. In 1965, it was observed by Epstein, Glaser and Jaffe [9] that pointwise
conditions on the positivity of energy (in fact, of any observable), such as the
Strong and Null Energy Conditions, cannot hold in any quantum field theory un-
der the Wightman axioms. This is the main reason why energy conditions draw
particular interest in attempts to extend the singularity theorems.

However, the quantum violations of the positivity of energy must be somehow
constrained. Otherwise, according to an argument originally due to Ford [10],
macroscopic violations of the Second Law of Thermodynamics would be observ-
able, which contradicts experience. It is thus expected on physical grounds that
every quantum field satisfies some Quantum Energy Inequality, and the search for
these is an active area of research. In rough terms, what these conditions are ex-
pected to enforce is that a negative energy density in a region of spacetime should
be balanced out by positive energy densities in its neighbouring regions. This sort
of compensation is sometimes referred to as “quantum interest”.

Unfortunately, the derivation of quantum energy inequalities is a very technical
problem, and, as far as is currently known, must be done in a largely case-by-
case basis; a general rule for obtaining an inequality for a given quantum field
theory does not exist. This is even more so in quantum field theories on curved
spacetimes, where one runs into some problems which are not yet fully solved
in this setting, such as renormalisation and the inexistence of a preferred vacuum
state. Nevertheless, several isolated examples exist; references [11–23] constitute
a brief list. For an thorough review of the current state of knowledge on quantum
energy inequalities and a more exhaustive bibliography, see [24].

The first singularity theorems with weakened energy conditions were proved
by Tipler [25, 26] and Roman [27, 28], between 1978 and 1988, followed by
Wald and Yurtsever [29] in 1991. The energy hypotheses of these theorems were
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essentially averaged versions of the Strong, Weak and Null Energy Conditions, of
the general form ∫

𝛾

𝐹
(
𝛾′(𝑢), 𝛾′(𝑢)

)
d𝑢 ≥ 0 ,

where, according to which energy condition is being replaced, 𝛾 can be a timelike
or lightlike geodesic and 𝐹 can be the Ricci tensor or the energy-momentum tensor.

In spite of the alternative energy conditions that they employ, all of the exten-
sions of the Hawking-Penrose theorems mentioned above are of a purely classical
character. Indeed, a complete answer to the question of whether singularities still
appear when the quantum behaviour of matter is taken into account is evidently
not possible in the absence of a quantum theory of gravitation itself. However,
one can look for indications in semiclassical gravity, where the Einstein equation
is substituted by

𝐺 = 8𝜋⟨𝑇⟩𝜔, . (1.1)

In this equation, the classical energy-momentum tensor is replaced with the expec-
ted value of the energy-momentum of a quantum field theory, calculated in a given
state 𝜔. Thus, the gravitational field retains its classical character from General
Relativity, while the other matter fields are treated via a quantum theory.

It is in this context that the first singularity theorems with energy conditions
inspired by quantum energy inequalities appeared. This was achieved by C. J.
Fewster and G. J. Galloway in 2011 [30]. The curvature assumption in their work
is that the “energy density” 𝜌(𝑢) = Ric

(
𝛾′(𝑢), 𝛾′(𝑢)

)
verifies∫

𝛾′

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ −
𝑁∑︁
𝑖=0

𝑄𝑖




 𝑓 (𝑖)


2
, (1.2)

for any test function 𝑓 ∈ C∞
0 (R), where𝑄0, . . . , 𝑄𝑁 are positive constants and ∥·∥

denotes the usual 𝐿2-norm. A condition of this kind can be reasonably expected
to hold for a Ricci tensor that is linked to the energy-momentum tensor of a
quantum theory via (1.1); that is because the integral in the left hand side of (1.2)
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closely resembles the form of an expected value in quantum field theory. Note also
that (1.2) does not require 𝜌(𝑢) to be positive for all 𝑢, but it does impose limits
on the occurrence of negative values.

Subsequently, the results of [30] were expanded and updated by Fewster and
E.-A. Kontou in 2019 [31]. The main feature of this most recent development is
the usage of a new criterion for the detection of focal points, which, as discussed
at the beginning of this chapter, are a central element in the proofs of singularity
theorems. All of the singularity theorems previously mentioned had their proofs
based on the Raychaudhuri equation, which rules the evolution of the expansion
𝜃 of a geodesic congruence. Under the initial and energy conditions, 𝜃 can be
shown to diverge within finite time, which, in this approach, is the indicator of the
presence of a focal point. Meanwhile, the criterion which detects focal points in
the new approach is a functional inequality of the form: there exists a function 𝑓

such that

𝐽 [ 𝑓 ] ≤ 𝐾 , (1.3)

where 𝐽 is a functional on 𝑓 which takes into account the energy density 𝜌(𝑢)
and 𝐾 is a quantity related to the convergence of a certain spacelike submanifold,
which is where the initial condition comes in. Despite requiring a certain amount
of mathematical background, the new mathematical method employed is much
simpler to work with. Its form also makes it very convenient to work with energy
conditions of the form (1.2), since both are stated in terms of a “test” function 𝑓 .

The text is organised as follows. In Chapter 2, we present in detail the vari-
ational approach to the characterisation of geodesics, conjugate points and focal
points, following closely O’Neill’s textbook on Semi-Riemannian Geometry [32].
Chapter 3 deals with the application of the methods discussed in the previous
chapter to the deduction of singularity theorems of [31]. Appendix A collects
some definitions and results that are frequently used throughout the text and that
may not be covered in standard General Relativity texts, mostly concerning semi-
Riemannian submanifolds and Jacobi fields. There is also a second Appendix
aimed at completing the proofs of two theorems in Chapter 2.

We conclude this introductory chapter with some conventions and notations
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that are used throughout this text. The pair (𝑀, 𝑔), where 𝑀 is an 𝑚-dimensional
differentiable manifold and 𝑔 a metric tensor on 𝑀 will denote a semi-Riemannian
manifold. Spacetime is modelled as a Lorentz manifold, i.e., a semi-Riemannian
manifold with metric signature (−, +, . . . , +) (or, equivalently, with index 𝜈 = 1).
Given ∇, the Levi-Civita connection of the metric 𝑔, the curvature tensor 𝑅 is
defined as

𝑅(𝑋,𝑌 )𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌 ]𝑍 .

The Ricci tensor is given by the trace over the first and fourth entries of the
curvature: if 𝑥, 𝑦 ∈ 𝑇𝑝𝑀 and 𝑒1, . . . , 𝑒𝑚 are an orthonormal basis for 𝑇𝑝𝑀 , with
𝜀𝑖 = ⟨𝑒𝑖 , 𝑒𝑖⟩,

Ric(𝑥, 𝑦) =
𝑚∑︁
𝑖=1

𝜀𝑖 ⟨𝑅(𝑒𝑖, 𝑥)𝑦 , 𝑒𝑖⟩ .

With these conventions, the Einstein equation reads, in natural units,

Ric−𝑆
2
𝑔 = 8𝜋𝑇 ,

where 𝑆, the scalar curvature, denotes the trace of the Ricci tensor, and 𝑇 is
the energy-momentum tensor. In Misner-Thorne-Wheeler’s [33] sign conventions
table, our conventions correspond to [+ + +].

We employ Einstein’s summing notation, meaning that repeated up- and down-
indices are implicitly summed over; for example,

𝑔𝑖 𝑗𝑢
𝑖𝑣 𝑗 =

∑︁
𝑖

∑︁
𝑗

𝑔𝑖 𝑗𝑢
𝑖𝑣 𝑗 .



Chapter 2

Variational methods for the
characterisation of geodesics,
conjugate and focal points

The aim of this chapter is to show how variational methods can be used to
characterise geodesics and locate conjugate or focal points on a semi-Riemannian
manifold. The exposition follows closely the developments in Chapter 10 of
O’Neill’s book on Semi-Riemannian Geometry [32], along with some preliminary
concepts and results from other chapters. However, the approach used here is
slightly different, both for the sake of brevity and to make the treatment of the
timelike and lightlike cases as unified as possible. Notations and conventions also
differ somewhat from that reference; this will emphasised whenever it may lead to
confusion.

In Section 2.1, we construct the concept of variation of a curve, which is
the central object of the variational theory. Section 2.2 introduces the functional
𝐸 , to which our variational methods will be applied, and it is used to derive a
characterisation of geodesics. In Section 2.3, the Hessian, a bilinear form related
to the second variation of 𝐸 , is defined, and then used in Sections 2.4 and 2.5
to obtain characterisations of conjugate and focal points. Finally, in Section 2.6,
the inequalities which are used in [31] as criteria for the detection of focal points
are extracted as a consequence of the main theorem in the previous section. We

8
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refer the reader to Appendix A for several definitions and results which find
frequent use throughout this chapter, concerning Jacobi fields and the theory of
semi-Riemannian submanifolds.

2.1 Variation of a curve

The basic ingredient of the variational method that will be introduced in this
text is the concept of variation of a curve:

Definition 3. Let 𝑀 be a differentiable manifold and 𝛾 : [𝑎, 𝑏] → 𝑀 a smooth,
regular curve in 𝑀 . A variation of 𝛾 is a smooth function

Φ : [𝑎, 𝑏] × (−𝜀, 𝜀) −→ 𝑀 ,

where 𝜀 > 0, such that Φ(𝑢, 0) = 𝛾(𝑢) for all 𝑢 in [𝑎, 𝑏].

For each fixed 𝑣 ∈ (−𝜀, 𝜀), we will refer to the curve 𝑢 ↦→ Φ(𝑢, 𝑣) as a
longitudinal curve of the variation Φ; in particular, the longitudinal curve with
𝑣 = 0 is just 𝛾. Likewise, given 𝑢 ∈ [𝑎, 𝑏], we will call 𝑣 ↦→ Φ(𝑢, 𝑣) a transverse
curve of Φ. The transverse curves with 𝑢 = 𝑎 and 𝑢 = 𝑏 are called the first (or
initial) and last (or final) transverse curves of Φ, respectively. When the initial
and final transverse curves of Φ are constant at 𝛾(𝑎) and 𝛾(𝑏), respectively, Φ is
said to be a fixed endpoint variation.

We will also refer to 𝑢 and 𝑣 as the longitudinal and transverse parameters of
the variation, respectively. It is useful to think of Φ as a one-parameter family of
curves around 𝛾. When interpreted in this manner, the curves in the family are the
longitudinal ones, and they are indexed by the transverse parameter 𝑣.

The variation naturally associates to each pair (𝑢0, 𝑣0) two vectors tangent to𝑀
at Φ(𝑢0, 𝑣0): the velocities of the longitudinal and transverse curves of Φ through
that point. We will denote them, respectively, by𝑈 and 𝑉 . As usual, they act on a
function 𝑓 ∈ C∞(𝑀) as

𝑈 (𝑢0, 𝑣0) 𝑓 =
𝜕 ( 𝑓 ◦Φ)
𝜕𝑢

����
(𝑢0,𝑣0)

and 𝑉 (𝑢0, 𝑣0) 𝑓 =
𝜕 ( 𝑓 ◦Φ)

𝜕𝑣

����
(𝑢0,𝑣0)

. (2.1)
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Note that, by allowing the point (𝑢0, 𝑣0) to vary in the expressions above, the
resulting objects 𝑈 𝑓 and 𝑉 𝑓 are not smooth functions on 𝑀 , but rather on
[𝑎, 𝑏] × (−𝜀, 𝜀).

Clearly,𝑈 and 𝑉 need not define vector fields on 𝑀 (nor on an open subset of
it). In the first place, the dimension of 𝑀 may be greater than 2, in which case 𝑈
and 𝑉 could at best be extended to vector fields on 𝑀 . Besides, no assumption is
made on the injectiveness of the variation. Therefore, different points (𝑢, 𝑣) may
map to the same point in 𝑀 , and assign different values for the velocity vectors𝑈
and 𝑉 at that point. In fact, 𝑈 and 𝑉 are more aptly described as vector fields on
the mapping Φ itself:

Definition 4. Let 𝑀 and 𝑁 be differentiable manifolds and 𝜑 : 𝑁 → 𝑀 a smooth
map between them. A vector field on 𝜑 is a smooth mapping 𝑋 : 𝑁 → 𝑇𝑀 such
that, for each 𝑝 ∈ 𝑁 , 𝑋 (𝑝) is in 𝑇𝜑(𝑝)𝑀 . The set of vector fields on 𝜑 is denoted
by 𝔛(𝜑).

Since the dependence of ∇𝑋𝑌 on 𝑋 is only pointwise, it is possible to define
the covariant derivative of a vector field on 𝑀 with respect to a vector field on 𝜑.
Let 𝑋 ∈ 𝔛(𝜑), as in the definition above, and let 𝑌 ∈ 𝔛(𝑀). Given a point 𝑝 ∈ 𝑁 ,
let Ω be a neighbourhood of 𝜑(𝑝) in 𝑀 with an associated coordinate system.
Then, the components of 𝑋 and 𝑌 on the induced basis are functions

𝑋 𝑗 : 𝜑−1(Ω) −→ R (1 ≤ 𝑗 ≤ 𝑚)
𝑌 𝑘 : Ω −→ R (1 ≤ 𝑘 ≤ 𝑚) ,

and

(∇𝑋𝑌 ) (𝑝) =
[
𝑋 (𝑝)𝑌 𝑖 + Γ𝑖𝑗 𝑘

(
𝜑(𝑝)

)
𝑋 𝑗 (𝑝)𝑌 𝑘

(
𝜑(𝑝)

) ]
𝜕𝑖 (𝑝) ,

where Γ𝑖
𝑗 𝑘

are the Christoffel symbols of the connection of 𝑀 in the given co-
ordinates. Note that the result is in 𝔛(𝜑), like 𝑋 , rather than in 𝔛(𝑀), like
𝑌 .

If one tries to replace 𝑌 with a vector field on 𝜑, one quickly runs into trouble
with the fact that the first term in the expression above may try to take derivatives
of 𝑌 𝑖 along directions which are not tangent to the image of 𝜑, and these are
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undefined. However, the covariant derivative of 𝑌 ∈ 𝔛(𝜑) can be defined in the
special case where 𝑋 is the pushforward through 𝜑 of a vector field 𝑍 on 𝑁:
𝑋 = 𝜑∗𝑍 . In this case, the components of 𝑌 are defined on 𝜑−1(Ω), like those of
𝑋 in the previous example, and so we can act on them using 𝑍 instead of 𝑋 . The
definition then becomes

(∇𝑋𝑌 ) (𝑝) =
[
𝑍 (𝑝)𝑌 𝑖 + Γ𝑖𝑗 𝑘

(
𝜑(𝑝)

)
𝑋 𝑗 (𝑝)𝑌 𝑘 (𝑝)

]
𝜕𝑖 (𝑝) .

Put in different terms, when 𝑋 is a pushforward, it only takes derivatives of 𝑌
along the image of 𝜑, and the definition extends to 𝑌 ∈ 𝔛(𝜑).

The situation of the last paragraph is true, in particular, for𝑈 and 𝑉 : being the
velocities of the longitudinal and transverse curves of Φ, they can be written as
Φ∗

(
𝜕
𝜕𝑢

)
and Φ∗

(
𝜕
𝜕𝑣

)
, respectively. For future reference, the derivatives of a vector

field 𝑌 ∈ 𝔛(Φ) along𝑈 and 𝑉 are

∇𝑈𝑌 =

[
𝜕𝑌 𝑖

𝜕𝑢
+

(
Γ𝑖𝑗 𝑘 ◦Φ

)
𝑈 𝑗𝑌 𝑘

]
𝜕𝑖 (2.2)

and

∇𝑉𝑌 =

[
𝜕𝑌 𝑖

𝜕𝑣
+

(
Γ𝑖𝑗 𝑘 ◦Φ

)
𝑉 𝑗𝑌 𝑘

]
𝜕𝑖 . (2.3)

If we use the equations above to calculate ∇𝑈𝑉 − ∇𝑉𝑈, the symmetry of
the Christoffel symbols makes it so that the second terms of either expression
cancel out. If we denote the coordinate functions associated with the patch Ω by
𝑥1, . . . , 𝑥𝑚, the components of𝑈 and 𝑉 are given by

𝑈𝑖 =
𝜕
(
𝑥𝑖 ◦Φ

)
𝜕𝑢

and 𝑉 𝑖 =
𝜕
(
𝑥𝑖 ◦Φ

)
𝜕𝑣

. (2.4)

Therefore, we are left with

∇𝑈𝑉 − ∇𝑉𝑈 =

(
𝜕2(𝑥𝑖 ◦Φ)
𝜕𝑢 𝜕𝑣

− 𝜕2(𝑥𝑖 ◦Φ)
𝜕𝑣 𝜕𝑢

)
𝜕𝑖 ,
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and, by commutation of partial derivatives, we conclude

∇𝑈𝑉 = ∇𝑉𝑈 . (2.5)

Equations (2.2) and (2.3) can be applied consecutively to obtain an expression
for ∇𝑉∇𝑈𝑌 . Writing Γ𝑖

𝑗 𝑘
◦Φ as Γ̂𝑖

𝑗 𝑘
for conciseness,

∇𝑉∇𝑈𝑌 =

[
𝜕2𝑌 𝑖

𝜕𝑣𝜕𝑢
+
𝜕 Γ̂𝑖

𝑗 𝑘

𝜕𝑣
𝑈 𝑗𝑌 𝑘 + Γ̂𝑖𝑗 𝑘

𝜕𝑈 𝑗

𝜕𝑣
𝑌 𝑘 +

+ Γ̂𝑖𝑗 𝑘𝑈
𝑗 𝜕𝑌

𝑘

𝜕𝑣
+ Γ̂𝑖𝑗 𝑘𝑉

𝑗 𝜕𝑌
𝑘

𝜕𝑢
+ Γ̂𝑖𝑗 𝑘 Γ̂

𝑘
𝑙𝑚𝑉

𝑗𝑈𝑙𝑌𝑚
]
𝜕𝑖 .

Writing the corresponding expression for ∇𝑈∇𝑉𝑌 and subtracting them, the first
term cancels out by commutation of the partial derivatives, the fourth and fifth
terms cancel as they appear on both expressions, and the third term cancels out by
using (2.4). Finally, after making the replacements

𝜕 Γ̂𝑖
𝑗 𝑘

𝜕𝑢
= 𝑈𝑙

𝜕Γ𝑖
𝑗 𝑘

𝜕𝑥𝑙
◦Φ and

𝜕 Γ̂𝑖
𝑗 𝑘

𝜕𝑣
= 𝑉 𝑙

𝜕Γ𝑖
𝑗 𝑘

𝜕𝑥𝑙
◦Φ

(which are just applications of the chain rule) and shuffling around some indices,
we find

∇𝑈∇𝑉𝑌 − ∇𝑉∇𝑈𝑌 = 𝑈 𝑗𝑉 𝑘𝑌 𝑙

[(
𝜕Γ𝑖

𝑘𝑙

𝜕𝑥 𝑗
−
𝜕Γ𝑖

𝑗 𝑙

𝜕𝑥𝑘
+ Γ𝑖𝑗𝑚Γ

𝑚
𝑘𝑙 − Γ𝑖𝑘𝑚Γ

𝑚
𝑗𝑙

)
◦Φ

]
𝜕𝑖

=
(
𝑅 𝑗 𝑘𝑙

𝑖 ◦Φ
)
𝑈 𝑗𝑉 𝑘𝑌 𝑙𝜕𝑖 .

Written in a component-free manner,

∇𝑈∇𝑉𝑌 − ∇𝑉∇𝑈𝑌 = 𝑅(𝑈,𝑉)𝑌 . (2.6)

Equations (2.5) and (2.6) will play a fundamental role in the variational theory.
We end this section with a collection of definitions that will be used frequently

in what follows. The first one is the variation vector field of a variation Φ. This
is simply the vector field𝑊 (𝑢) along the base curve 𝛾 which gives the velocity of
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the transverse curve through 𝛾(𝑢). More explicitly,

𝑊 (𝑢) = 𝑉 (𝑢, 0) (∀𝑢 ∈ [𝑎, 𝑏]) .

Similarly, the mapping 𝑢 ↦→ (∇𝑉𝑉) (0, 𝑡), giving the proper acceleration of the
transverse curve through 𝛾(𝑢), will be called the acceleration vector field of Φ
and denoted 𝐴(𝑢).

Given a curve 𝛾 and a vector field 𝑊 along 𝛾, it is always possible to find a
variation of 𝛾 whose variation vector field is𝑊 . Indeed, it is enough to define

Φ(𝑢, 𝑣) = exp𝛾(𝑢)
(
𝑣𝑊 (𝑢)

)
,

with 𝜀 > 0 chosen small enough that the exponential on the right hand side is
well-defined for every 𝑣 ∈ (−𝜀, 𝜀) at every point 𝛾(𝑢). As we shall see below, the
variation vector field𝑊 and the acceleration vector field 𝐴 encode basically all of
the information necessary for the variational theory.

The definition below extends the notion of variation to the case of piecewise
smooth curves:

Definition 5. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a piecewise smooth curve with breaks
𝑢1, . . . , 𝑢𝑛, where 𝑎 < 𝑢1 < . . . < 𝑢𝑛 < 𝑏. For convenience, we will also denote
𝑎 = 𝑢0 and 𝑏 = 𝑢𝑛+1. A piecewise smooth variation of 𝛾 is a map

Φ : [𝑎, 𝑏] × (−𝜀, 𝜀) −→ 𝑀 ,

where 𝜀 > 0, such that the restriction of Φ to [𝑢𝑖, 𝑢𝑖+1] × (−𝜀, 𝜀) is smooth, for
each 0 ≤ 𝑖 ≤ 𝑛. As before, it is required that Φ(𝑢, 0) = 𝛾(𝑢).

Note that the definition implies that all the transverse curves of Φ are smooth,
whereas the longitudinal ones are piecewise smooth. We introduce a notation for
the discontinuities of 𝛾 at the breaks. For each 1 ≤ 𝑖 ≤ 𝑛, define

Δ𝛾′(𝑢𝑖) = 𝛾′(𝑢+𝑖 ) − 𝛾′(𝑢−𝑖 ) .

It will also be useful to think of 𝛾′ as identically zero for 𝑢 outside [𝑎, 𝑏], so that
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we can include the following expressions to the ones above:

Δ𝛾′(𝑢0) = 𝛾′(𝑎) and Δ𝛾′(𝑢𝑛+1) = −𝛾′(𝑏) .

We note that the variation vector field is continuous, and smooth everywhere except
possibly at the breaks.

A variation is said to be nontrivial when its variation vector field is not
identically zero. When all the longitudinal curves of a variation are geodesics, we
call it a variation of 𝛾 by geodesics (note that this can only happen when 𝛾 itself
is a geodesic). The following is an important property of variations by geodesics
that will be frequently used in our treatment of conjugate and focal points:

Proposition 6. The variation vector field of a variation of 𝛾 by geodesics is a
Jacobi field1.

Proof. By the definition of the curvature tensor,

𝑅(𝑊, 𝛾′)𝛾′ = [𝑅(𝑉,𝑈)𝑈] |𝑣=0 = (∇𝑉∇𝑈𝑈 − ∇𝑈∇𝑉𝑈) |𝑣=0 .

Because the longitudinal curves are geodesics, ∇𝑈𝑈 = 0. On the second term, we
can use ∇𝑉𝑈 = ∇𝑈𝑉 to get

𝑅(𝑊, 𝛾′)𝛾′ = (−∇𝑈∇𝑈𝑉) |𝑣=0 = −𝑊′′ ,

so that𝑊 verifies the Jacobi equation. □

2.2 Variational theory of the 𝐸 functional

Given a curve 𝛾 and Φ a variation of 𝛾, we can define the following functional:

𝐸Φ(𝑣) =
1
2

𝑏∫
𝑎

⟨𝑈 (𝑢, 𝑣) , 𝑈 (𝑢, 𝑣)⟩ d𝑢 .

1See Appendix A.
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We will often omit the subscript Φ when the particular variation to which we are
referring is understood. The quantity measured by 𝐸 (𝑣) is closely related to the
length of the longitudinal curve with parameter 𝑣, which would be given by

𝐿Φ(𝑣) =
𝑏∫

𝑎

√︁
𝜎⟨𝑈 , 𝑈⟩ d𝑢 ,

where 𝜎 is +1 for spacelike𝑈 and −1 for timelike𝑈. Note that, while 𝐸 cannot be
given a geometric meaning like the length 𝐿 —it is not even reparameterisation-
invariant—, it has the advantage of being differentiable in regions where the
character of the curves changes from timelike to spacelike, which 𝐿 does not,
because of the factor 𝜎 that is inserted to make the square root well-defined. This
makes 𝐿 ill-suited to work with variations of a lightlike curve, for example. The
absence of the square root also makes 𝐸 slightly less cumbersome to deal with. In
spite of this, the variational theory of 𝐸 gives the same information regarding focal
and conjugate points as does 𝐿. References [31, 32] work with 𝐿 for the timelike
and spacelike cases, and then switch to 𝐸 for the lightlike case. Here, for the sake
of brevity and unification, we will use 𝐸 throughout.

The following simple proposition gives an expression for the first and second
derivatives of 𝐸 with respect to 𝑣:

Proposition 7. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a piecewise smooth curve on a semi-
Riemannian manifold 𝑀 and Φ a piecewise smooth variation of 𝛾. Then,

𝐸′
Φ(0) = −

𝑛+1∑︁
𝑖=0

⟨𝑊 (𝑢𝑖) , Δ𝛾′(𝑢𝑖)⟩ −
𝑏∫

𝑎

⟨𝑊 , 𝛾′′⟩ d𝑢 (2.7)

and

𝐸′′
Φ(0) = −

𝑛+1∑︁
𝑖=0

⟨𝐴(𝑢𝑖) , Δ𝛾′(𝑢𝑖)⟩ +

+
𝑏∫

𝑎

[⟨𝑊′ , 𝑊′⟩ + ⟨𝑅(𝑊, 𝛾′)𝑊 , 𝛾′⟩ − ⟨𝐴 , 𝛾′′⟩] d𝑢 , (2.8)
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where 𝑊 denotes the variation vector field of Φ. Equations (2.7) and (2.8) are
known as the first and second variation formulas, respectively.

Proof. Let ℎ(𝑢, 𝑣) = 1
2 ⟨𝑈 , 𝑈⟩, so that 𝐸Φ(𝑣) is given by integration of ℎ over

𝑢 ∈ [𝑎, 𝑏]. At first, we will work separately on each subinterval [𝑢𝑖, 𝑢𝑖+1], where
Φ is smooth. For that purpose, we define

𝐸𝑖 (𝑣) =
𝑢𝑖+1∫
𝑢𝑖

ℎ(𝑢, 𝑣) d𝑢 (0 ≤ 𝑖 ≤ 𝑛) .

Taking derivatives with respect to 𝑣, we find

𝜕ℎ

𝜕𝑣
= ⟨∇𝑉𝑈 , 𝑈⟩ = ⟨∇𝑈𝑉 , 𝑈⟩

and

𝜕2ℎ

𝜕𝑣2 = ⟨∇𝑉∇𝑈𝑉 , 𝑈⟩ + ⟨∇𝑈𝑉 , ∇𝑉𝑈⟩
= ⟨∇𝑈∇𝑉𝑉 , 𝑈⟩ + ⟨𝑅(𝑉,𝑈)𝑉 , 𝑈⟩ + ⟨∇𝑈𝑉 , ∇𝑈𝑉⟩ ,

where the following facts have been used:

• differentiation with respect to 𝑣 is equivalent to application of the vector 𝑉 ;

• the compatibility of the Levi-Civita connection with the metric; and

• Equations (2.5) and (2.6).

When 𝑣 is set to 0,𝑈 and 𝑉 reduce to 𝛾′(𝑢) and𝑊 (𝑢), respectively, whereas ∇𝑉𝑉
becomes 𝐴(𝑢). Therefore,

𝜕ℎ

𝜕𝑣

����
𝑣=0

= ⟨𝑊′ , 𝛾′⟩ = ⟨𝑊 , 𝛾′⟩′ − ⟨𝑊 , 𝛾′′⟩ ,

and

𝜕2ℎ

𝜕𝑣2

����
𝑣=0

= ⟨𝐴′ , 𝛾′⟩ + ⟨𝑅(𝑊, 𝛾′)𝑊 , 𝛾′⟩ + ⟨𝑊′ , 𝑊′⟩

= ⟨𝐴 , 𝛾′⟩′ − ⟨𝐴 , 𝛾′′⟩ + ⟨𝑅(𝑊, 𝛾′)𝑊 , 𝛾′⟩ + ⟨𝑊′ , 𝑊′⟩ ,
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where 𝑊′ and 𝐴′ denote covariant derivatives along 𝛾 (so that the steps that
resemble applications of the Leibniz rule actually amount to the Levi-Civita prop-
erty). Integrating the expressions above on [𝑢𝑖, 𝑢𝑖+1] gives 𝐸′

𝑖
(0) and 𝐸′′

𝑖
(0):

𝐸′
𝑖 (0) =

〈
𝑊 (𝑢𝑖+1) , 𝛾′

(
𝑢−𝑖+1

)〉
−

〈
𝑊 (𝑢𝑖) , 𝛾′

(
𝑢+𝑖

)〉
−

𝑢𝑖+1∫
𝑢𝑖

⟨𝑊 , 𝛾′′⟩ d𝑢

𝐸′′
𝑖 (0) =

〈
𝐴(𝑢𝑖+1) , 𝛾′(𝑢−𝑖+1)

〉
−

〈
𝐴(𝑢𝑖) , 𝛾′(𝑢+𝑖 )

〉
+

+
𝑢𝑖+1∫
𝑢𝑖

[⟨𝑊′ , 𝑊′⟩ + ⟨𝑅(𝑊, 𝛾′)𝑊 , 𝛾′⟩ − ⟨𝐴 , 𝛾′′⟩] d𝑢 .

Finally, summing over all the subintervals gives the intended formulas for 𝐸′
Φ
(0)

and 𝐸′′
Φ
(0). □

It is a well-known fact that, on sufficiently small neighbourhoods, geodesics
are length-minimising curves. Therefore, it comes as no surprise that the variation
of the 𝐿 functional can be applied the characterisation of geodesics. The following
theorem shows that the variation of 𝐸 can be used to obtain the same information.

Theorem 8. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a piecewise smooth curve on a semi-
Riemannian manifold 𝑀 . Then, 𝛾 is an unbroken geodesic if, and only if,
𝐸′
Φ
(0) = 0 for every fixed endpoint variation Φ of 𝛾.

Proof. From the first variation formula proved in Proposition 7, it is evident that,
if 𝛾 is an unbroken geodesic, then 𝐸′

Φ
(0) = 0 for every variation Φ, since 𝛾′′ = 0,

all the breaks at 𝑢1, . . . , 𝑢𝑛 are trivial and𝑊 (𝑎) = 𝑊 (𝑏) = 0.
For the converse, let 𝛾 have breaks at 𝑢1, . . . , 𝑢𝑛. We begin by showing that

𝛾 must be a geodesic segment on each subinterval [𝑢𝑖, 𝑢𝑖+1]. Pick any point
𝑡 ∈ (𝑢𝑖, 𝑢𝑖+1) and any nonzero vector 𝑤 in 𝑇𝛾(𝑡)𝑀 . Extend 𝑤 by parallel translation
to a vector field𝑊0 along 𝛾 defined on some interval 𝐼 ⊂ [𝑢𝑖, 𝑢𝑖+1]. Take a smooth
function 𝑓 : [𝑎, 𝑏] → R whose support is contained in 𝐼 and define the vector
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field along 𝛾

𝑊 (𝑢) =
{
𝑓 (𝑢)𝑊0(𝑢) for 𝑢 ∈ 𝐼
0 otherwise

.

Now, using the procedure shown in Equation (2.7), one can obtain a variation Φ

of 𝛾 which has𝑊 as its variation vector field. Then, by the first variation formula,

𝐸′
Φ(0) = −

∫
𝐼

𝑓 ⟨𝛾′′ , 𝑊0⟩ d𝑢 .

But, by hypothesis, 𝐸′
Φ
(0) = 0. Since 𝑡 and 𝑤 are arbitrary, we conclude that

𝛾′′ = 0 on (𝑢𝑖, 𝑢𝑖+1), i.e., 𝛾 is a geodesic on that subinterval.
To show that 𝛾 is unbroken, we employ the same strategy to construct, for each

break point 𝑢𝑖, a variation Φ whose variation vector field 𝑊 is trivial except on a
small neighbourhood of 𝑢𝑖. Then, since we already know 𝛾 is a geodesic on both
subintervals surrounding 𝑢𝑖, the equation 𝐸′

Φ
(0) = 0 reduces to

⟨𝑊 (𝑢𝑖) , Δ𝛾′(𝑢𝑖)⟩ = 0 ,

and the freedom in the choice of 𝑊 , along with the nondegeneracy of the metric,
implies Δ𝛾′(𝑢𝑖) = 0. □

If one is searching for curves which locally maximise or minimise the 𝐸

functional, then, in light of the theorem above, the second variation formula
acquires particular interest in the case where 𝛾 is an unbroken geodesic. That is
because, as we now know, such curves are precisely the critical points of 𝐸 , and
thus the question of whether they correspond to local maxima, minima or neither
passes through the second derivative test. With that in mind, we now specialise
the second variation formula to the case of an unbroken geodesic segment:

Corollary 9. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a geodesic segment on a semi-Riemannian
manifold 𝑀 and Φ a variation of 𝛾. Then,
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𝐸′′
Φ(0) = ⟨𝐴 , 𝛾′⟩|𝑏𝑎 + ⟨𝑊′ , 𝑊⟩|𝑏𝑎 −

𝑏∫
𝑎

⟨𝑊′′ + 𝑅(𝑊, 𝛾′)𝛾′ , 𝑊⟩ d𝑢 .

If, in addition, Φ has a fixed endpoint at 𝑎 or 𝑏, the corresponding boundary terms
vanish.

Proof. This follows immediately from (2.8) by setting 𝛾′′ and the jumps of 𝛾′ to
zero and by a rearrangement of the other two terms in the integral. □

Notice that the first factor in the inner product in the integrand is the quantity
that is set to zero in the Jacobi equation. Thus, much in the same way as being a
geodesic relates to 𝛾 being a critical point of 𝐸 , the existence of conjugate points
of 𝛾(𝑎) in (𝑎, 𝑏] will give information on whether or not 𝛾 extremises 𝐸 . How
this comes about will be seen in detail in the following sections.

2.3 The Hessian

Given a manifold 𝑀 and points 𝑝 and 𝑞 in 𝑀 , we denote by Ω(𝑝, 𝑞) the set of
all piecewise smooth curves 𝛾 : [𝑎, 𝑏] → 𝑀 such that 𝛾(𝑎) = 𝑝 and 𝛾(𝑏) = 𝑞.
Ω(𝑝, 𝑞) has the structure of an ∞-dimensional Frèchet manifold. The precise
definitions shall not concern us here, but this observation will motivate some of
the terminology to be used from this point onward.

Take 𝛾 inΩ(𝑝, 𝑞) andΦ a fixed endpoint variation of 𝛾. Then, each longitudinal
curve of Φ is a “point” in Ω(𝑝, 𝑞); therefore, seen as a function of the transverse
parameter 𝑣, the variation defines a curve in Ω(𝑝, 𝑞). The variation vector field
of Φ is the velocity of that curve at 𝑣 = 0, and thus is to be interpreted as a
tangent vector of Ω(𝑝, 𝑞) at 𝛾. We denote by 𝑇𝛾Ω (omitting the specification of
the endpoints 𝑝 and 𝑞 for simplicity) the set of all piecewise smooth vector fields
𝑋 along 𝛾 such that 𝑋 (𝑎) = 𝑋 (𝑏) = 0.

The functional 𝐸 assigns a real number to each curve connecting 𝑝 and 𝑞; it
is therefore a function on Ω(𝑝, 𝑞). Hence, the quantity 𝐸′

Φ
(0) associated with a
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variation Φ that we previously calculated is the application of the variation vector
field of Φ to the function 𝐸 ,𝑊 [𝐸].

Now let 𝛾 be a geodesic in 𝑀 , and consider the second variation formula (2.8)
for fixed endpoint variations of 𝛾. Notice that it does not depend on any particular
feature of Φ other than the variation vector field𝑊 . This leads us to define

𝐻𝛾 (𝑋,𝑌 ) =
𝑏∫

𝑎

[⟨𝑋′ , 𝑌 ′⟩ + ⟨𝑅(𝑋, 𝛾′)𝑌 , 𝛾′⟩] d𝑢 ,

for all 𝑋 and 𝑌 in 𝑇𝛾Ω. Then, by properties of the metric and the curvature, 𝐻𝛾
is symmetric and bilinear in 𝑋 and 𝑌 (the homogeneity is with respect to real
numbers, not functions on [𝑎, 𝑏]). The second variation formula states that

𝐸′′
Φ(0) = 𝐻𝛾 (𝑊,𝑊) ,

for any variation Φ which has 𝑊 as its variation vector field. Because of these
properties, we shall refer to the bilinear form 𝐻𝛾 as the Hessian of 𝐸 at 𝛾.

Occasionally, it will prove useful to work with a modified version of the
Hessian, which we denote 𝐻⊥

𝛾 (𝑋,𝑌 ). All this does is restrict 𝐻𝛾 to 𝑇⊥
𝛾 Ω, i.e.,

the subspace composed of all those 𝑋 ∈ 𝑇𝛾Ω which are everywhere orthogonal
to 𝛾′. Note that, since 𝛾 may be lightlike, the tangential direction could itself be
orthogonal. On the other hand, when 𝛾 is not lightlike, any vector field along 𝛾
has a unique decomposition into tangential and orthogonal components.

2.4 Conjugate points

Definition 10. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a geodesic and 𝑐 a number in (𝑎, 𝑏]. Then,
𝛾(𝑐) is said to be conjugate to 𝛾(𝑎) if there exists a nonzero Jacobi field2 𝑌 on 𝛾
such that 𝑌 (𝑎) = 𝑌 (𝑐) = 0.

The following theorem gives two alternative characterisations of conjugate
points, one in terms of properties of the exponential map at 𝛾(𝑎) and one in terms
of variations of 𝛾:

2See Appendix A.
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Theorem 11. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a geodesic and 𝑝 = 𝛾(𝑎). Then, the following
assertions are equivalent:

i. 𝛾(𝑏) is conjugate to 𝑝.

ii. The exponential map exp𝑝 : 𝑇𝑝𝑀 → 𝑀 is singular at (𝑏 − 𝑎)𝛾′(𝑎).

iii. There exists a nontrivial variation of 𝛾 by geodesics starting at 𝑝 such that
𝑊 (𝑏) = 0.

Proof. Before proceeding to the proof of the implications between i, ii and iii,
we will construct a class of variations which will play an important role in the
following steps.

Let 𝑥 ∈ 𝑇𝑝𝑀 and assume exp𝑝 [(𝑏 − 𝑎)𝑥] is well-defined. If not, 𝑥 can be
rescaled so that this condition holds true. Let 𝑦𝑥 be a tangent vector to 𝑇𝑝𝑀 at 𝑥.
Being a vector space, 𝑇𝑝𝑀 is canonically isomorphic to each of its tangent spaces.
Denote by 𝑦 the vector in 𝑇𝑝𝑀 which corresponds to 𝑦𝑥 . Then, define

Φ(𝑢, 𝑣) = exp𝑝 [(𝑢 − 𝑎) (𝑥 + 𝑣𝑦)] ,

for each 𝑢 ∈ [𝑎, 𝑏] and each 𝑣 in an interval (−𝜀, 𝜀) chosen small enough for
definiteness. By elementary properties of the exponential map, Φ is a variation
of the geodesic 𝛾𝑥 which departs from 𝑝 at 𝑢 = 𝑎 with velocity 𝑥. Likewise, its
longitudinal curves are the geodesics 𝛾𝑥+𝑣𝑦, so that Φ is a variation by geodesics
with a fixed starting point 𝑝.

We will show that𝑊 , the variation vector field of Φ, has the following proper-
ties:

𝑊 (𝑎) = 0 , 𝑊′(𝑎) = 𝑦 ; (2.9)

𝑊 (𝑏) = d exp𝑝
[
(𝑏 − 𝑎)𝑦 (𝑏−𝑎)𝑥

]
, (2.10)

where the subscript (𝑏 − 𝑎)𝑥 labels the vector in 𝑇(𝑏−𝑎)𝑥
(
𝑇𝑝𝑀

)
which canonically

corresponds to 𝑦 and 𝑦𝑥 .
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At 𝑢 = 𝑎, we have

𝑈 (𝑎, 𝑣) = 𝑥 + 𝑣𝑦 and 𝑉 (𝑎, 𝑣) = 0 ;

these come from the facts that the initial velocities of the longitudinal curves are
𝑥 + 𝑣𝑦 and that the first transverse curve of Φ is constant at 𝑝. In particular, the
variation vector field vanishes at 𝑎, which proves the first part of Equation (2.9).
Using the formulas above and Equations (2.5) and (2.3), we calculate (using any
local coordinate system),

(∇𝑈𝑉) (𝑎, 𝑣) = (∇𝑉𝑈) (𝑎, 𝑣) =
𝜕

𝜕𝑣
(𝑥 + 𝑣𝑦) = 𝑦 .

This is true for any 𝑣 ∈ (−𝜀, 𝜀); in particular, setting 𝑣 = 0 gives𝑊′(𝑎) = 𝑦.
As for (2.10), we note that the exponential in the definition of Φ carries the

curve

𝛽(𝑣) = (𝑏 − 𝑎) (𝑥 + 𝑣𝑦)

in 𝑇𝑝𝑀 to the final transverse curve of the variation. Therefore, by the definition
of the differential, d exp𝑝 maps the velocity of 𝛽 at 𝑣 = 0 (which is (𝑏 − 𝑎)𝑦 (𝑏−𝑎)𝑥)
to the velocity of 𝑣 ↦→ Φ(𝑏, 𝑣) at 𝑣 = 0 (which is𝑊 (𝑏)).

Now we are in a position to prove all the necessary logical relations between
(i), (ii) and (iii):

( i ⇒ ii ) We will construct a variation Φ of 𝛾 as above with appropriate choices
of 𝑥 and 𝑦. First, we let 𝑥 = 𝛾′(𝑎). The condition that exp𝑝 [(𝑏 − 𝑎)𝑥]
be well-defined is then automatically satisfied, since the geodesic 𝛾 extends
over [𝑎, 𝑏] by hypothesis.

From the definition of conjugate points, (i) implies the existence of a Jacobi
field 𝑌 on 𝛾 which vanishes at 𝑎 and 𝑏. Because 𝑌 is nonzero and 𝑌 (𝑎) = 0,
we must have 𝑌 ′(𝑎) ≠ 0. We let 𝑦 = 𝑌 ′(𝑎).

The variation of 𝛾 thus constructed is a variation by geodesics, and hence its
variation vector field is a Jacobi field. Furthermore, from (2.9), we see that
it satisfies the same initial conditions as 𝑌 . The two fields must therefore
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coincide, and we have 𝑊 (𝑏) = 𝑌 (𝑏) = 0. Equation (2.10) then shows that
the exponential map is singular at (𝑏 − 𝑎)𝛾′(𝑎).

( ii ⇒ iii ) By hypothesis, there exists a nonzero vector 𝑧 tangent to 𝑇𝑝𝑀 at
(𝑏 − 𝑎)𝛾′(𝑎) such that d exp𝑝 (𝑧) = 0. Let 𝑦 be the vector in 𝑇𝑝𝑀 ca-
nonically corresponding to 𝑧, and construct the variation Φ as before with
this 𝑦 and with 𝑥 = 𝛾′(𝑎). Then, the vector (𝑏 − 𝑎)𝑦 (𝑏−𝑎)𝑥 appearing in for-
mula (2.10) is a multiple of 𝑧, and the linearity of the differential map allows
us to conclude that 𝑊 (𝑏) = 0. Therefore, the variation Φ thus constructed
has all the properties required in assertion (iii).

( iii ⇒ i ) The variation vector field 𝑊 of such a variation already vanishes at 𝑎
and 𝑏; since it is a variation by geodesics, 𝑊 is also a Jacobi field. Thus,
𝛾(𝑏) is conjugate to 𝑝. □

The presence of the term 𝛾′′ inside the integral in the First Variation For-
mula (2.7) hints that all unbroken geodesics are critical points of the 𝐸 functional,
and Theorem 8 shows that a converse holds in a certain sense. Likewise, the term
𝑊′′ + 𝑅(𝑊, 𝛾′)𝛾′ in the Second Variation Formula (in the form of Corollary 9),
suggests that Jacobi fields annihilate the Hessian. The next result, much like The-
orem 8—and proven using similar techniques—, will provide a converse to this
observation.

Before we state the Theorem, we introduce some notation and terminology.
Firstly, the Hessian 𝐻𝛾 is not a linear transform, but a bilinear form, and thus by
its kernel we mean the set of all 𝑋 ∈ 𝑇𝛾Ω such that 𝐻𝛾 (𝑋,𝑌 ) = 0 for all 𝑌 ∈ 𝑇𝛾Ω.
If 𝛾 : [𝑎, 𝑏] → 𝑀 is a geodesic connecting 𝑝 to 𝑞, we denote the set of all Jacobi
fields on 𝛾 which vanish at 𝑎 and 𝑏 by J(𝑎, 𝑏).

Theorem 12. For a geodesic 𝛾 ∈ Ω(𝑝, 𝑞) parametrised on [𝑎, 𝑏], the kernel of
𝐻𝛾 is precisely J(𝑎, 𝑏).

Proof. That J(𝑎, 𝑏) ⊆ ker𝐻𝛾 is immediate from Corollary 9. Let 𝑋 ∈ ker𝐻𝛾,
with breaks 𝑎 = 𝑢0 < 𝑢1 < . . . < 𝑢𝑛 < 𝑢𝑛+1 = 𝑏. We will show that 𝑋 satisfies
the Jacobi equation on each subinterval of the form (𝑢𝑖, 𝑢𝑖+1). Let 𝑡 ∈ (𝑢𝑖, 𝑢𝑖+1)
and 𝑦 ∈ 𝑇𝛾(𝑡)𝑀 . Extend 𝑦 by parallel translation to an interval 𝐼 ⊂ (𝑢𝑖, 𝑢𝑖+1), and
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call this extension 𝑌0. Take a smooth function 𝑓 defined on [𝑎, 𝑏] with support
contained in 𝐼. Then, for the vector field

𝑌 (𝑢) =
{
𝑓 (𝑢)𝑌0(𝑢) if 𝑢 ∈ 𝐼
0 otherwise

along 𝛾, the Second Variation Formula gives

0 = 𝐻𝛾 (𝑋,𝑌 ) = 𝑓

∫
𝐼

⟨𝑋′′ + 𝑅(𝑋, 𝛾′)𝛾′ , 𝑌0⟩ d𝑢 .

Because the choices of 𝑡 and 𝑦 are arbitrary, this means that 𝑋 must satisfy the
Jacobi equation on (𝑢𝑖, 𝑢𝑖+1).

Repeating this reasoning around the break points𝑢1, . . . , 𝑢𝑛 shows thatΔ𝑋 (𝑢𝑖) =
0 at each of them. Since 𝑋 ∈ 𝑇𝛾Ω, it automatically vanishes at 𝑎 and 𝑏. With this,
we conclude that 𝑋 ∈ J(𝑎, 𝑏), and so also ker𝐻𝛾 ⊆ J(𝑎, 𝑏). □

Notice that, starting with 𝑋 ∈ ker𝐻⊥
𝛾 and 𝑦 orthogonal to 𝛾′(𝑡), the proof of

the theorem works without further modifications to show that ker𝐻⊥
𝛾 is contained

within the set of orthogonal Jacobi fields in J(𝑎, 𝑏). The converse is also immediate
from Corollary 9, so that these sets actually coincide.

The next theorem details in which cases it is possible for the bilinear form 𝐻𝛾

to be semidefinite, given the causal character of 𝛾 and the semi-Riemannian index
of 𝑀 . In order to prove that result, we will need the following proposition, which
shows that, under certain assumptions, we can control the sign of 𝐻𝛾 (𝑊,𝑊) by
appropriately choosing the vector field𝑊 .

Proposition 13. Let 𝛾 ∈ Ω(𝑝, 𝑞) be a geodesic parameterised on [𝑎, 𝑏]. Suppose
a vector 𝑦 ∈ 𝑇𝑝𝑀 can be chosen which is linearly independent from 𝛾′(𝑎) and
either unit timelike or unit spacelike, i.e., ⟨𝑦 , 𝑦⟩ = 𝜀, with 𝜀 = ±1. Then, we can
construct a vector field 𝑋 ∈ 𝑇𝛾Ω such that 𝐻𝛾 (𝑋, 𝑋) has the same sign as 𝜀.

Proof. Take the parallel transport of 𝑦 along 𝛾, and call it 𝑌 . Let

𝑋 =
1
𝜔

sin
(
𝜔(𝑢 − 𝑎)

)
𝑌 ,
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where 𝜔 = 𝑛𝜋/(𝑏 − 𝑎) for some 𝑛 ∈ N, so that 𝑋 (𝑎) = 𝑋 (𝑏) = 0. Then,

⟨𝑋′ , 𝑋′⟩ = cos2 (
𝜔(𝑢 − 𝑎)

)
⟨𝑌 , 𝑌⟩ = 𝜀 cos2 (

𝜔(𝑢 − 𝑎)
)
.

For the curvature term,

⟨𝑅(𝑋, 𝛾′)𝑋 , 𝛾′⟩ = 1
𝜔2 sin2 (

𝜔(𝑢 − 𝑎)
)
⟨𝑅(𝑌, 𝛾′)𝑌 , 𝛾′⟩ .

Then,

𝐻𝛾 (𝑋, 𝑋) = 𝜀
𝑏∫

𝑎

cos2 (
𝜔(𝑢 − 𝑎)

)
d𝑢 + 1

𝜔2

𝑏∫
𝑎

⟨𝑅(𝑌, 𝛾′)𝑌 , 𝛾′⟩ sin2 (
𝜔(𝑢 − 𝑎)

)
d𝑢 .

By our choice of 𝜔,

𝑏∫
𝑎

cos2 (
𝜔(𝑢 − 𝑎)

)
d𝑢 =

𝑏∫
𝑎

sin2 (
𝜔(𝑢 − 𝑎)

)
d𝑢 =

𝑏 − 𝑎
2

.

Because ⟨𝑅(𝑌, 𝛾′)𝑌 , 𝛾′⟩ is a continuous function of 𝑢, there exists 𝐿 > 0 such
that

|⟨𝑅(𝑌, 𝛾′)𝑌 , 𝛾′⟩| < 2𝐿
𝑏 − 𝑎

for all 𝑢 ∈ [𝑎, 𝑏], so that������ 1
𝜔2

𝑏∫
𝑎

⟨𝑅(𝑌, 𝛾′)𝑌 , 𝛾′⟩ sin2 (
𝜔(𝑢 − 𝑎)

)
d𝑢

������ < 𝐿

𝜔2 .

Therefore, choosing 𝜔 large enough makes it so that 𝐻𝛾 (𝑋, 𝑋) has the same sign
as that of the first term, which is 𝜀. □

Theorem 14. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a geodesic on a semi-Riemannian manifold
𝑀 of dimension 𝑚 and index 𝜈.

i. If 𝛾 is lightlike, 𝐻𝛾 is neither positive nor negative semidefinite.

ii. If 𝛾 is spacelike, then:
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a. If 𝐻𝛾 is positive semidefinite, 𝜈 = 0.

b. If 𝐻𝛾 is negative semidefinite, 𝜈 = 𝑚 − 1.

iii. If 𝛾 is timelike, then:

a. If 𝐻𝛾 is negative semidefinite, 𝜈 = 𝑚.

b. If 𝐻𝛾 is positive semidefinite, 𝜈 = 1.

Proof. The previous proposition makes this result trivial to prove:

i. If 𝛾 is lightlike, there exist both a unit timelike and a unit spacelike vectors
in 𝑇𝛾(𝑎)𝑀 independent from 𝛾′(𝑎). Therefore, 𝐻𝛾 takes on both positive
and negative values.

We will prove items (ii) and (iii) simultaneously, by noting that they can be written
in a unified way. Indeed, let 𝜎 denote the sign of ⟨𝛾′ , 𝛾′⟩. Then,

a’. If 𝜎𝐻𝛾 is positive semidefinite, then either 𝜈 = 0 or 𝜈 = 𝑚.

b’. If 𝜎𝐻𝛾 is negative semidefinite, then either 𝜎 = +1 and 𝜈 = 𝑚−1 or 𝜎 = −1
and 𝜈 = 1.

Since there are no timelike geodesics on Riemannian manifolds nor spacelike
geodesics on anti-Riemannian manifolds, item a’ above correctly summarises (ii.a)
and (iii.a) in the original phrasing of the theorem. Let us now prove statements
(a’) and (b’):

a’. Suppose 1 ≤ 𝜈 ≤ 𝑚−1. Then we can choose a unit vector 𝑦 ∈ 𝑇𝛾(𝑎)𝑀 ortho-
gonal to 𝛾′(𝑎) and with the opposite causal character. Thus, the construction
of Proposition 13 with 𝜀 = −𝜎 gives 𝜎𝐻𝛾 (𝑋, 𝑋) < 0, a contradiction.

b’. If the conclusions do not hold, we can choose 𝑦 ∈ 𝑇𝛾(𝑎)𝑀 orthogonal to
and with the same causal character as 𝛾′(𝑎). In this case, the procedure
above gives 𝜎𝐻𝛾 (𝑋, 𝑋) > 0, which contradicts the hypothesis of negative
semidefiniteness. □



CHAPTER 2. VARIATIONAL METHODS 27

Theorem 14 tells us that there are basically only two interesting cases when
studying the definiteness of the Hessian (and hence the possibility of extremising
the functional 𝐸): geodesics on a Riemannian manifold and timelike geodesics on
a Lorentzian manifold. The other two cases where the Hessian can be definite—
geodesics on an anti-Riemannian manifold and spacelike geodesics on an anti-
Lorentzian manifold—can be mapped onto the previous two cases by simply
reversing the sign of the metric. This is the motivation behind the following
definition:

Definition 15. A geodesic 𝛾 : [𝑎, 𝑏] → 𝑀 is said to be cospacelike if the subspace
𝛾′(𝑢)⊥ of 𝑇𝛾(𝑢)𝑀 is spacelike for some (and hence all) 𝑢 ∈ [𝑎, 𝑏].

Theorem 18 below will establish a connection between the definiteness of the
Hessian and the existence and location of conjugate points along a cospacelike
geodesic. Before that, we prove two auxiliary results.

Lemma 16. If 𝑋 and𝑌 are Jacobi fields along a geodesic 𝛾, then ⟨𝑋′ , 𝑌⟩−⟨𝑋 , 𝑌 ′⟩
is a constant.

Proof. This is a simple consequence of the Levi-Civita condition and symmetries
of the curvature:

⟨𝑋′ , 𝑌⟩′ = ⟨𝑋′ , 𝑌 ′⟩ + ⟨𝑋′′ , 𝑌⟩ = ⟨𝑋′ , 𝑌 ′⟩ − ⟨𝑅(𝑋, 𝛾′)𝛾′ , 𝑌⟩ =
= ⟨𝑋′ , 𝑌 ′⟩ − ⟨𝑅(𝑌, 𝛾′)𝛾′ , 𝑋⟩ = ⟨𝑋′ , 𝑌 ′⟩ + ⟨𝑌 ′′ , 𝑋⟩ = ⟨𝑌 ′ , 𝑋⟩′ □

Lemma 17. Let 𝑌1, . . . , 𝑌𝑘 be Jacobi fields on a geodesic 𝛾 such that〈
𝑌 ′
𝑖 , 𝑌 𝑗

〉
=

〈
𝑌𝑖 , 𝑌

′
𝑗

〉
(∀𝑖, 𝑗) ,

𝑓 1, . . . , 𝑓 𝑘 smooth functions on 𝛾 and 𝑋 = 𝑓 𝑖𝑌𝑖. Then,

⟨𝑋′ , 𝑋′⟩ + ⟨𝑅(𝑋, 𝛾′)𝑋 , 𝛾′⟩ = ⟨𝐴 , 𝐴⟩ + ⟨𝑋 , 𝐵⟩′ , (2.11)

where 𝐴 =
(
𝑓 𝑖
)′
𝑌𝑖 and 𝐵 = 𝑓 𝑖𝑌 ′

𝑖
.

Proof. From the Levi-Civita property,

⟨𝑋 , 𝐵⟩′ = ⟨𝑋′ , 𝐵⟩ + ⟨𝑋 , 𝐵′⟩ .
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Inserting 𝑋′ = 𝐴 + 𝐵 and 𝐵′ =
(
𝑓 𝑖
)′
𝑌 ′
𝑖
+ 𝑓 𝑖𝑌 ′′

𝑖
,

⟨𝑋 , 𝐵⟩′ = ⟨𝐴 , 𝐵⟩ + ⟨𝐵 , 𝐵⟩ +
〈
𝑋 ,

(
𝑓 𝑖
)′
𝑌 ′
𝑖

〉
+

〈
𝑋 , 𝑓 𝑖𝑌 ′′

𝑖

〉
.

Now, using the definition of 𝑋 in the third term and the fact that the 𝑌𝑖 are Jacobi
fields in the fourth,

⟨𝑋 , 𝐵⟩′ = ⟨𝐴 , 𝐵⟩ + ⟨𝐵 , 𝐵⟩ +
(
𝑓 𝑖
)′
𝑓 𝑗

〈
𝑌 𝑗 , 𝑌

′
𝑖

〉
−

〈
𝑋 , 𝑓 𝑖𝑅(𝑌𝑖, 𝛾′)𝛾′

〉
.

Next we apply the remaining hypothesis on the𝑌𝑖 and the expression for 𝑋 in terms
of the 𝑌𝑖:

⟨𝑋 , 𝐵⟩′ = ⟨𝐴 , 𝐵⟩ + ⟨𝐵 , 𝐵⟩ +
(
𝑓 𝑖
)′
𝑓 𝑗

〈
𝑌 ′
𝑗 , 𝑌𝑖

〉
− ⟨𝑋 , 𝑅(𝑋, 𝛾′)𝛾′⟩ .

Finally, recognising the formulas of 𝐴 and 𝐵 in the third term and rearranging, we
obtain

2⟨𝐴 , 𝐵⟩ + ⟨𝐵 , 𝐵⟩ = ⟨𝑋 , 𝐵⟩′ − ⟨𝑅(𝑋, 𝛾′)𝑋 , 𝛾′⟩ .

Now, using 𝑋′ = 𝐴 + 𝐵 and the formula above,

⟨𝑋′ , 𝑋′⟩ = ⟨𝐴 , 𝐴⟩ + 2⟨𝐴 , 𝐵⟩ + ⟨𝐵 , 𝐵⟩
= ⟨𝐴 , 𝐴⟩ + ⟨𝑋 , 𝐵⟩′ − ⟨𝑅(𝑋, 𝛾′)𝑋 , 𝛾′⟩ ,

which leads to the intended formula (2.11). □

Theorem 18. Let 𝛾 ∈ Ω(𝑝, 𝑞) be a cospacelike geodesic with sign 𝜎.

1. If there are no points along 𝛾 conjugate to 𝑝 = 𝛾(𝑎), then 𝐻⊥
𝛾 is positive

definite.

2. If 𝑞 = 𝛾(𝑏) is the only point along 𝛾 which is conjugate to 𝑝, then 𝐻⊥
𝛾 is

semidefinite, but not definite.

3. If there is a point 𝛾(𝑟) conjugate to 𝑝 with 𝑎 < 𝑟 < 𝑏, then 𝐻⊥
𝛾 is not

semidefinite.
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Proof.

1. Let 𝑣1, . . . , 𝑣𝑚−1 be a basis for 𝛾′(𝑎)⊥. Then, for each 𝑖 in {1, . . . , 𝑚 − 1},
let 𝑌𝑖 be the unique Jacobi field on 𝛾 with initial conditions 𝑌𝑖 (𝑎) = 0,
𝑌 ′
𝑖
(𝑎) = 𝑣𝑖. Because there are no conjugate points of 𝑝 on (𝑎, 𝑏], {𝑌𝑖 (𝑢)}

is a basis for 𝛾′(𝑢)⊥ for every 𝑢 in that interval (if the 𝑌𝑖 were not linearly
independent at 𝑢, one could find coefficients 𝛼𝑖 such that 𝛼𝑖𝑌𝑖 (𝑢) = 0, and
then the linear combination 𝛼𝑖𝑌𝑖 would be a Jacobi field vanishing at both 𝑎
and 𝑢).

By the observations above, any 𝑋 ∈ 𝑇⊥
𝛾 Ω can be uniquely written as 𝑓 𝑖𝑌𝑖 on

(𝑎, 𝑏], where the 𝑓 𝑖 are continuous, piecewise smooth functions. Because
all the 𝑌𝑖 vanish at 𝑎, Lemma 16 implies that

〈
𝑌 ′
𝑖
, 𝑌

𝑗

〉
−

〈
𝑌
𝑖
, 𝑌 ′

𝑗

〉
= 0 on

[𝑎, 𝑏]. Then, Lemma 17 applies, and

𝐻⊥
𝛾 (𝑋, 𝑋) =

𝑏∫
𝑎

⟨𝐴 , 𝐴⟩ d𝑢 + ⟨𝑋 , 𝐵⟩|𝑏𝑎 .

The boundary terms vanish, because 𝑋 (𝑎) = 𝑋 (𝑏) = 0. Since 𝛾 is cospace-
like and each𝑌𝑖 is perpendicular to 𝛾, ⟨𝐴 , 𝐴⟩ ≥ 0, and hence𝐻⊥

𝛾 (𝑋, 𝑋) ≥ 0.
Besides, if 𝐻⊥

𝛾 (𝑋, 𝑋) = 0, then ⟨𝐴 , 𝐴⟩ must vanish identically, implying
each 𝑓 𝑖 is constant. But, because 𝑋 vanishes at 𝑞, the 𝑓 𝑖 are all zero at 𝑏.
Then, 𝑋 = 0.

2. By hypothesis, there exists a nontrivial Jacobi field on 𝛾 which vanishes at
𝑎 and 𝑏. By Proposition 44 in Appendix A, the perpendicular component of
this field (which can be taken, since 𝛾 is cospacelike) is also a Jacobi field
vanishing at 𝑎 and 𝑏. Then, Theorem 12 proves that 𝐻⊥

𝛾 has a nontrivial
kernel, and hence cannot be definite.

We now proceed to prove that 𝐻⊥
𝛾 is positive semidefinite, i.e., for any

𝑋 ∈ 𝑇⊥
𝛾 Ω, 𝐻⊥

𝛾 (𝑋, 𝑋) ≥ 0. First, observe that if there exists 𝑟 ∈ (𝑎, 𝑏) such
that 𝑋 vanishes identically on [𝑟, 𝑏], then item 1 of this theorems applies
with 𝛾 replaced with 𝛾 | [𝑎,𝑟] to show that 𝐻⊥

𝛾 (𝑋, 𝑋) > 0, and so there is
nothing to prove. We therefore assume that such a point 𝑟 does not exist.



CHAPTER 2. VARIATIONAL METHODS 30

We now construct a sequence 𝑋𝑛 in 𝑇⊥
𝛾 Ω which approaches 𝑋 as 𝑛 → +∞.

Let 𝑟𝑛 = 𝑏 − 1/𝑛, for each 𝑛 ∈ N large enough that 𝑟𝑛 lies in the last smooth
segment of 𝑋 . Let 𝑌𝑛 denote the parallel transport of 𝑋 (𝑟𝑛) along 𝛾. Then,
define

𝑋𝑛 (𝑢) =


𝑋 (𝑢) , for 𝑢 ∈ [𝑎, 𝑟𝑛](
1 − 2

𝑢 − 𝑟𝑛
𝑏 − 𝑟𝑛

)
𝑌𝑛 (𝑢) , for 𝑢 ∈

(
𝑟𝑛,

𝑏+𝑟𝑛
2

)
0 , for 𝑢 ∈

[
𝑏+𝑟𝑛

2 , 𝑏

] .

Because 𝑋𝑛 is nontrivial on [𝑎, 𝑟𝑛] and vanishes identically on
[
𝑏+𝑟𝑛

2 , 𝑏

]
, item

1 implies that𝐻⊥
𝛾 (𝑋𝑛, 𝑋𝑛) > 0. Then, the fact that𝐻⊥

𝛾 (𝑋𝑛, 𝑋𝑛) → 𝐻⊥
𝛾 (𝑋, 𝑋)

shows that 𝐻⊥
𝛾 (𝑋, 𝑋) ≥ 0.3

3. By Proposition 13, using the fact that 𝛾 is cospacelike, we can always obtain
𝑋 ∈ 𝑇⊥

𝛾 Ω such that 𝐻⊥
𝛾 (𝑋, 𝑋) > 0. So it remains to show that the opposite

inequality also occurs.

By hypothesis, there exists a nontrivial Jacobi field𝑌 on 𝛾 which vanishes at
𝑎 and 𝑟. Let 𝑋 = 𝑌 on [𝑎, 𝑟) and 𝑋 = 0 on [𝑟, 𝑏]. Since 𝑌 is not identically
zero, 𝑋′(𝑟−) ≠ 0. Let 𝑍 ∈ 𝑇⊥

𝛾 Ω with 𝑍 (𝑟) = −𝑋′(𝑟−) and 𝛿 > 0.

𝐻⊥
𝛾 (𝑋 + 𝛿𝑍, 𝑋 + 𝛿𝑍) = 𝐻⊥

𝛾 (𝑋, 𝑋) + 2𝛿𝐻⊥
𝛾 (𝑋, 𝑍) + 𝛿2𝐻⊥

𝛾 (𝑍, 𝑍) .

The first term vanishes, since 𝑋 is a piecewise Jacobi field. Meanwhile,
because 𝑋 vanishes identically on [𝑟, 𝑏], the second one reduces to

2𝛿𝐻⊥
𝛾 (𝑋, 𝑍) = 2𝛿

𝑟∫
𝑎

[⟨𝑋′ , 𝑍′⟩ + ⟨𝑅(𝑋, 𝛾′)𝑍 , 𝛾′⟩] d𝑢 .

3 While the statement that 𝐻⊥
𝛾 (𝑋𝑛, 𝑋𝑛) → 𝐻⊥

𝛾 (𝑋, 𝑋) may seem harmless enough at first sight,
note that there is an integral involved, and therefore the pointwise convergence of 𝑋𝑛 to 𝑋 does not
immediately imply the convergence of 𝐻⊥

𝛾 (𝑋𝑛, 𝑋𝑛). A complete proof of this point can be found
in Appendix B.
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Using ⟨𝑋′ , 𝑍′⟩ = ⟨𝑋′ , 𝑍⟩′ − ⟨𝑋′′ , 𝑍⟩,

2𝛿𝐻⊥
𝛾 (𝑋, 𝑍) = 2𝛿

𝑟∫
𝑎

[
⟨𝑋′ , 𝑍⟩′ − ⟨𝑋′′ + 𝑅(𝑋, 𝛾′)𝛾′ , 𝑍⟩

]
d𝑢

= 2𝛿⟨𝑋′(𝑟−) , 𝑍 (𝑟)⟩ = −2𝛿⟨𝑋′(𝑟−) , 𝑋′(𝑟−)⟩ < 0 ,

the inequality stemming from the fact that 𝛾 is cospacelike. Then, for
sufficiently small 𝛿, 𝐻⊥

𝛾 (𝑋 + 𝛿𝑍, 𝑋 + 𝛿𝑍) < 0. □

2.5 Focal points

In the previous section, by studying the variational theory of the functional 𝐸
on the set of curves Ω(𝑝, 𝑞), we were able to derive a characterisation of geodesics
joining 𝑝 and 𝑞, as well as establish a connection between the properties of the
Hessian of 𝐸 and the location of conjugate points along these geodesics. Now, by
replacing the endpoint 𝑝 with a higher-dimensional submanifold 𝑃 of 𝑀 , we will
show how the same type of technique can be used to study focal points of 𝑃.

Definition 19. Let 𝑀 be an 𝑚-dimensional semi-Riemannian manifold, 𝑞 a point
in 𝑀 and 𝑃 a 𝑝-dimensional semi-Riemannian submanifold of 𝑀 . The set of all
piecewise smooth curves 𝛾 : [𝑎, 𝑏] → 𝑀 such that 𝛾(𝑎) ∈ 𝑃 and 𝛾(𝑏) = 𝑞 shall
be denoted by Ω(𝑃, 𝑞).

The notion of fixed endpoint variation then extends as follows: a variation
Φ of a curve 𝛾 ∈ Ω(𝑃, 𝑞) is said to be a (𝑃, 𝑞)-variation if Φ(𝑎, 𝑣) ∈ 𝑃 and
Φ(𝑏, 𝑣) = 𝑞 for all 𝑣 ∈ (−𝜀, 𝜀). As before, these variations can be regarded as
curves in Ω(𝑃, 𝑞).

The tangent space of Ω(𝑃, 𝑞) at 𝛾 consists of the piecewise smooth vector
fields 𝑋 along 𝛾 which verify 𝑋 (𝑎) ∈ 𝑇𝛾(𝑎)𝑃 and 𝑋 (𝑏) = 0. It is denoted 𝑇𝛾Ω,
once again omitting 𝑃 and 𝑞 for short.

In this more general setting, when we attempt to extremise the 𝐸 functional
on curves in Ω(𝑃, 𝑞), one extra condition appears in comparison with the fixed
endpoint case. Namely, the critical points of 𝐸 are not just geodesics from 𝑃 to
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𝑞, but specifically those which are orthogonal to 𝑃. The proposition below more
formally expresses this generalisation of Theorem 8:

Proposition 20. A curve 𝛾 ∈ Ω(𝑃, 𝑞) is an unbroken geodesic orthogonal to 𝑃 if,
and only if, 𝐸′

Φ
(0) = 0 for every (𝑃, 𝑞)-variation Φ of 𝛾.

Proof. The direct implication is immediate from the First Variation Formula, since
the boundary term at 𝑢0 = 𝑎 becomes

−⟨𝑊 (𝑎) , 𝛾′(𝑎)⟩ ,

which vanishes, because, for a (𝑃, 𝑞)-variation, 𝑊 (𝑎) is tangent to 𝑃, whereas
𝛾′(𝑎) is by hypothesis orthogonal to it.

For the opposite direction, the proof proceeds exactly like that of Theorem 8 to
show that 𝛾 must be a geodesic on each subinterval (𝑢𝑖, 𝑢𝑖+1) and that the breaks
Δ𝛾′(𝑢1), . . . ,Δ𝛾′(𝑢𝑛+1) are all trivial. Special attention is only required at 𝑢0 = 𝑎.
Here, since 𝑊 (𝑎) is constrained by hypothesis to be tangent to 𝑃, we cannot
conclude that 𝛾′(𝑎) = 0, but only that 𝛾′(𝑎) is orthogonal to 𝑃. □

From now on, we will assume 𝛾 ∈ Ω(𝑃, 𝑞) is a geodesic orthogonal to 𝑃,
and look for the appropriate generalisation for the Hessian of 𝐸 . As before, this
should be a bilinear form 𝐻𝛾 defined on𝑇𝛾Ω such that, whenever𝑊 is the variation
vector field of a variation Φ, 𝐻𝛾 (𝑊,𝑊) coincides with 𝐸′′

Φ
(0). By the Second

Variation Formula, the only complication with respect to the fixed endpoint case
is the boundary term at 𝑎, which no longer vanishes trivially. If we let 𝛼(𝑣) denote
the initial transverse curve 𝑣 ↦→ Φ(𝑎, 𝑣),

⟨𝐴(𝑎) , 𝛾′(𝑎)⟩ = ⟨𝛼′′(0) , 𝛾′(𝑎)⟩ .

Now, 𝛼′′(0) can be canonically decomposed as the sum of a vector in 𝑇𝑝𝑃 and a
vector orthogonal to 𝑃 (see Appendix A); only the latter contributes to the inner
product above, since 𝛾′(𝑎) is also perpendicular to 𝑃. But the normal component
of 𝛼′′(0) can itself be rewritten as

𝛼′′(0)⊥ = II
(
𝛼′(0), 𝛼′(0)

)
= II

(
𝑊 (𝑎),𝑊 (𝑎)

)
,
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where II denotes the Second Fundamental Form of 𝑃. This motivates the following
generalisation of the Hessian:

Definition 21. Let 𝑃 be a semi-Riemannian submanifold of 𝑀 , 𝛾 : [𝑎, 𝑏] → 𝑀 a
𝑃-normal geodesic in Ω(𝑃, 𝑞) and 𝑋,𝑌 ∈ 𝑇𝛾Ω. Then, we define the Hessian of 𝐸
at 𝛾 as the bilinear form

𝐻𝛾 (𝑋,𝑌 ) = −
〈
𝛾′(𝑎) , II

(
𝑋 (𝑎), 𝑌 (𝑎)

)〉
+

+
𝑏∫

𝑎

[⟨𝑋′ , 𝑌 ′⟩ + ⟨𝑅(𝑋, 𝛾′)𝑌 , 𝛾′⟩] d𝑢 . (2.12)

Proposition 22. Let 𝑃 be a semi-Riemannian submanifold of 𝑀 , 𝛾 a 𝑃-normal
geodesic and 𝑌 a Jacobi field on 𝛾. Then, 𝑌 is the variation vector field of a
variation Φ of 𝛾 by 𝑃-normal geodesics if, and only if,

1. 𝑌 (𝑎) is tangent to 𝑃, and

2. 𝑌 ′(𝑎)⊤ = ĨI
(
𝑌 (𝑎), 𝛾′(𝑎)

)
.

Proof. First, assume 𝑌 is the variation vector field of a variation Φ as above. 𝑌 (𝑎)
is the initial velocity of the initial transverse curve of Φ, which is constrained to
remain in 𝑃. Therefore, 𝑌 (𝑎) is tangent to 𝑃. Now,𝑈 (𝑎, 𝑣) is a vector field along
the initial transverse curve of Φ which is everywhere normal to 𝑃, whereas𝑉 (𝑎, 𝑣)
is everywhere tangent. Then,

𝑌 ′(𝑎)⊤ = [∇𝑈𝑉 (𝑎, 0)]⊤

= [∇𝑉𝑈 (𝑎, 0)]⊤

= ĨI
(
𝑉 (𝑎, 0),𝑈 (𝑎, 0)

)
= ĨI

(
𝑌 (𝑎), 𝛾′(𝑎)

)
,

proving that the second condition is satisfied.
For the converse, assume𝑌 satisfies conditions in 1 and 2 in the statement. We

will construct a variation Φ of 𝛾 with the desired properties and whose variation
vector field 𝑊 coincides with 𝑌 . Let 𝜎 : (−𝜀, 𝜀) → 𝑃 be a curve such that
𝜎′(0) = 𝑌 (𝑎). We will first show that there exists a vector field 𝑍 along 𝜎 such
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that 𝑍 (0) = 𝛾′(𝑎) and 𝑍′(0) = 𝑌 ′(𝑎). For that purpose, let 𝐴 and 𝐵 denote the
normal parallel transports of 𝛾′(𝑎) and𝑌 ′(𝑎)⊥ along 𝜎, respectively. Then, define
𝑍 (𝑣) = 𝐴(𝑣)+𝑣𝐵(𝑣). It is clear that 𝑍 is normal to 𝑃 and that 𝑍 (0) = 𝐴(0) = 𝛾′(𝑎).
Besides,

𝑍′(0) = 𝐴′(0) + 𝐵(0)
= ĨI

(
𝜎′(0), 𝛾′(𝑎)

)
+ 𝑌 ′(𝑎)⊥

= ĨI
(
𝑌 (𝑎), 𝛾′(𝑎)

)
+ 𝑌 ′(𝑎)⊥

= 𝑌 ′(𝑎)⊤ + 𝑌 ′(𝑎)⊥

= 𝑌 ′(𝑎) ,

as intended.
Finally, we can construct the desired variation of 𝛾 using 𝑍:

Φ(𝑢, 𝑣) = exp𝜎(𝑣) [(𝑢 − 𝑎)𝑍 (𝑣)] .

Because of the use of the exponential map, it is immediate that this is a variation by
geodesics. Furthermore, since the initial velocities of these geodesics are given by
the vector field 𝑍 , they are all normal to 𝑃. It remains to show that𝑊 , the variation
vector field of Φ, coincides with 𝑌 . In the first place, 𝑊 (𝑎) = 𝜎′(0) = 𝑌 (𝑎).
Secondly, because𝑊 is the variation vector field and 𝑍 the initial velocities of the
longitudinal curves of Φ,

𝑊′(𝑎) = 𝑍′(0) = 𝑌 ′(𝑎) .

By Theorem 43 on page 74, the two observations above imply𝑊 ≡ 𝑌 . □

Definition 23. Let 𝑃 ⊂ 𝑀 be a semi-Riemannian submanifold and 𝛾 : [𝑎, 𝑏] → 𝑀

a geodesic perpendicular to 𝑃. A Jacobi field 𝑌 along 𝛾 is called a 𝑃-Jacobi field
if 𝑌 (𝑎) is tangent to 𝑃 and

𝑌 ′(𝑎)⊤ = ĨI
(
𝑌 (𝑎), 𝛾′(𝑎)

)
,

i.e., if it verifies both conditions in Proposition 22. The set of 𝑃-Jacobi fields along
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𝛾 will be denoted J𝑃.
A point 𝛾(𝑟) is called a focal point of 𝑃 if there exists a 𝑃-Jacobi field along 𝛾

which vanishes at 𝛾(𝑟). The set of all such vector fields is a subspace of J𝑃 whose
dimension is called the focal order of 𝛾(𝑟). This number is at most 𝑚 − 1, since:

1. 𝑢 ↦→ (𝑢 − 𝑎)𝛾′(𝑢) is a 𝑃-Jacobi field along 𝛾 and does not vanish at 𝛾(𝑟);

2. J𝑃 is isomorphic to 𝑇𝛾(𝑎)𝑀 , which is 𝑚-dimensional. (To see why, take
𝑥 ∈ 𝑇𝛾(𝑎)𝑃, 𝑧 ∈ 𝑇⊥

𝛾(𝑎)𝑃 and let 𝑋 be the unique Jacobi field along 𝛾 with
𝑋 (𝑎) = 𝑥, 𝑋′(𝑎) = 𝑧 + ĨI

(
𝑥, 𝛾′(𝑎)

)
. By construction, 𝑋 is a 𝑃-Jacobi field,

and, since 𝑇𝛾(𝑎)𝑀 decomposes as 𝑇𝛾(𝑎)𝑃 ⊕ 𝑇⊥
𝛾(𝑎)𝑃, the mapping 𝑥 ⊕ 𝑧 ↦→ 𝑋

gives the required isomorphism.)

According to Proposition 44, page 76, a 𝑃-Jacobi field along 𝛾 vanishing at
𝛾(𝑟) is always perpendicular to 𝛾, since it is so at both 𝑟 and the intersection
between 𝛾 and 𝑃.

The geometrical interpretation of focal points is similar to that of conjugate
points. If 𝛾(𝑟) is a focal point of 𝑃 along a normal geodesic, then there exists a
family of geodesics around 𝛾 which are all normal to 𝑃 and almost meet at 𝛾(𝑟).

The theorem below gives a characterisation of focal points in a very similar
manner as Theorem 11 does for conjugate points.

Theorem 24. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a normal geodesic to 𝑃. Then, the following
assertions are equivalent:

i. 𝛾(𝑏) is a focal point of 𝑃 along 𝛾.

ii. There is a nontrivial variation of 𝛾 by normal geodesics to 𝑃 such that
𝑊 (𝑏) = 0.

iii. The normal exponential map of𝑃, exp : 𝑁𝑃 → 𝑀 , is singular at (𝑏 − 𝑎)𝛾′(𝑎).

Proof. Proposition 22 establishes the equivalence between (i) and (ii). To complete
the proof, it will suffice to show that (ii) and (iii) are also equivalent.



CHAPTER 2. VARIATIONAL METHODS 36

( ii ⇒ iii ) Let Φ denote the variation of 𝛾 in question. Since its longitudinal
curves are all normal geodesics to 𝑃, Φ can be written in terms of the
normal exponential map of 𝑃:

Φ(𝑢, 𝑣) = exp[(𝑢 − 𝑎)𝑈 (𝑎, 𝑣)] .

Consider the curve 𝜑 : (−𝜀, 𝜀) → 𝑁𝑃 given by

𝜑(𝑣) = (𝑏 − 𝑎)𝑈 (𝑎, 𝑣) .

From the two previous formulas, it is clear that 𝜑 is carried by the normal
exponential map onto the last transverse curve ofΦ, 𝑣 ↦→ Φ(𝑏, 𝑣). Likewise,
it is mapped by the projection 𝜋 : 𝑁𝑃 → 𝑃 onto the first transverse curve of
Φ, 𝑣 ↦→ Φ(𝑎, 𝑣). Therefore, by the definition of the differential map, d exp
and d𝜋 carry the initial velocity of 𝜑 to𝑊 (𝑏) and𝑊 (𝑎), respectively, since
these are the initial velocities of the last and first transverse curves of Φ.
But, by hypothesis, 𝑊 (𝑏) = 0. This means that, if the initial velocity of 𝜑
is nonzero, the exponential map is singular at its basepoint, (𝑏 − 𝑎)𝛾′(𝑎), as
we intended to show. If, on the other hand, the initial velocity of 𝜑 is zero,
then 𝑊 (𝑎), its image through the linear map d𝜋, must also vanish. This
implies that 𝛾(𝑏) and 𝛾(𝑎) are conjugate points along 𝛾, and Theorem 11
guarantees that once again exp is singular at (𝑏 − 𝑎)𝛾′(𝑎).

( iii ⇒ ii ) The procedure is very similar to the one used in the previous item. Let
𝑥 be a nonzero tangent vector to 𝑁𝑃 at (𝑏−𝑎)𝛾′(𝑎) such that (d exp) (𝑥) = 0,
which exists by the assumption that exp is singular. Let 𝑍 : (−𝜀, 𝜀) → 𝑁𝑃

be a curve with initial velocity 𝑥 (it is therefore a normal vector field to 𝑃
with 𝑍 (0) = (𝑏 − 𝑎)𝛾′(𝑎)). Define

Φ : [𝑎, 𝑏] × (−𝜀, 𝜀) −→ 𝑀

(𝑢, 𝑣) ↦−→ exp
(𝑢 − 𝑎
𝑏 − 𝑎 𝑍 (𝑣)

)
;

then, Φ is a variation of 𝛾 by 𝑃-normal geodesics. Let 𝑝 = 𝛾(𝑎). We first
assume that the curve 𝜋

(
𝑍 (𝑣)

)
is not the constant curve at 𝑝. In that case,
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Φ is a nontrivial variation. The last transverse curve of Φ, 𝑣 ↦→ Φ(𝑏, 𝑣), is
the image of 𝑍 through exp; therefore, d exp maps 𝑥 onto𝑊 (𝑏). As a result,
𝑊 (𝑏) = 0.

Now, if 𝜋 ◦ 𝑍 is constant at 𝑝, then 𝑥 is tangent to 𝑇⊥
𝑝 𝑃 (and therefore also to

𝑇𝑝𝑀). This means that not only the normal exponential map, but also exp𝑝
is singular at (𝑏 − 𝑎)𝛾′(𝑎). By Theorem 11, 𝛾(𝑏) is conjugate to 𝑝. We
will show that it is also a focal point of 𝑃 along 𝛾. Since we already have
equivalence between (i) and (ii), this will prove that (iii) implies (ii) also in
this case. 𝑊 , the variation vector field of Φ, is a Jacobi field along 𝛾 which
vanishes at 𝑎 and 𝑏; thus,𝑊 (𝑎) is trivially tangent to 𝑃. It remains to prove
that𝑊′(𝑎)⊤ = ĨI

(
𝑊 (𝑎), 𝛾′(𝑎)

)
. Because𝑊 (𝑎) = 0 and ĨI is a bilinear form,

this amounts to showing𝑊′(𝑎)⊤ = 0. Using the longitudinal and transverse
velocity fields of Φ,𝑈 and 𝑉 , and noting that𝑈 (𝑎, 𝑣) = 𝑍 (𝑣),

𝑊′(𝑎) = (∇𝑈𝑉) (𝑎, 0) = (∇𝑉𝑈) (𝑎, 0) = 𝑍′(0) .

By construction, 𝑍′(0) is the vector in 𝑇𝑝𝑀 canonically corresponding to 𝑥,
which is normal to 𝑃; therefore, the tangential component of𝑊′(𝑎) vanishes,
as required. □

The following lemma characterises the kernel of 𝐻⊥
𝛾 , just as Theorem 12 does

in the fixed endpoint case.

Lemma 25. Let 𝑃 be a semi-Riemannian submanifold of 𝑀 and 𝛾 ∈ Ω(𝑃, 𝑞) a
geodesic issuing orthogonally from 𝑃. Then, the kernel of 𝐻⊥

𝛾 is precisely the set
of 𝑃-Jacobi fields along 𝛾 which vanish at 𝑞, which we denote J(𝑃, 𝑞).

Proof. Starting from (2.12), we first rewrite the boundary term using〈
𝛾′(𝑎) , II

(
𝑌 (𝑎), 𝑋 (𝑎)

)〉
= −

〈
ĨI
(
𝑌 (𝑎), 𝛾′(𝑎)

)
, 𝑋 (𝑎)

〉
.

Then, after integrating the term ⟨𝑌 ′ , 𝑋′⟩ by parts and using a symmetry of the
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curvature, we get

𝐻𝛾 (𝑌, 𝑋) = −
𝑏∫

𝑎

⟨𝑌 ′′ + 𝑅(𝑌, 𝛾′)𝛾′ , 𝑋⟩ d𝑢 −

−
〈
ĨI
(
𝑌 (𝑎), 𝛾′(𝑎)

)
− 𝑌 ′(𝑎) , 𝑋 (𝑎)

〉
.

Notice that, since 𝑋 (𝑎) is tangent to 𝑃, we may replace 𝑌 ′(𝑎) with 𝑌 ′(𝑎)⊤ in
the inner product without altering the result. With that in mind, it is immediate
from the formula above that, if 𝑌 is a 𝑃-Jacobi field, then 𝐻⊥

𝛾 (𝑌, 𝑋) = 0 for any
𝑋 ∈ 𝑇⊥

𝛾 Ω. Thus, J(𝑃, 𝑞) ⊂ ker𝐻⊥
𝛾 . For the converse, we use the same technique

as in Theorems 8 and 20: by exploiting the freedom in the choice of 𝑋 , we first
show that 𝑌 satisfies the Jacobi equation along 𝛾, and then that

𝑌 ′(𝑎)⊤ − ĨI
(
𝑌 (𝑎), 𝛾′(𝑎)

)
= 0 ;

together, these imply that 𝑌 is a 𝑃-Jacobi field. We get ker𝐻⊥
𝛾 ⊂ J(𝑃, 𝑞), which

concludes the proof. □

In the next two subsections, we prove theorems which establish the connection
between the ocurrence of focal points of 𝑃 along 𝛾 and the positiveness of 𝐻⊥

𝛾 ,
first in the case of a cospacelike geodesic and then in the lightlike case.

2.5.1 The cospacelike case

Theorem 26. Let 𝑃 be a semi-Riemannian submanifold of 𝑀 and 𝛾 ∈ Ω(𝑃, 𝑞) a
cospacelike 𝑃-normal geodesic. Then,

1. If 𝛾 contains no focal points of 𝑃, 𝐻⊥
𝛾 is positive definite.

2. If 𝑞 is the only focal point of 𝑃 along 𝛾, 𝐻⊥
𝛾 is semidefinite, but not definite.

3. If there exists a focal point 𝛾(𝑟) of 𝑃, with 𝑎 < 𝑟 < 𝑏, 𝐻⊥
𝛾 is not semidefinite.

Proof.
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1. Suppose 𝑋 and 𝑌 are 𝑃-Jacobi fields along 𝛾. Because 𝑌 (𝑎) is tangent to 𝑃,

⟨𝑋′(𝑎) , 𝑌 (𝑎)⟩ =
〈
𝑋′(𝑎)⊤ , 𝑌 (𝑎)

〉
.

Now, the second condition for 𝑋 to be a 𝑃-Jacobi field implies

⟨𝑋′(𝑎) , 𝑌 (𝑎)⟩ =
〈
ĨI
(
𝑋 (𝑎), 𝛾′(𝑎)

)
, 𝑌 (𝑎)

〉
.

Finally, using the identity
〈
𝑦 , ĨI(𝑥, 𝑛)

〉
= −⟨II(𝑦, 𝑥) , 𝑛⟩,

⟨𝑋′(𝑎) , 𝑌 (𝑎)⟩ = −
〈
II

(
𝑋 (𝑎), 𝑌 (𝑎)

)
, 𝛾′(𝑎)

〉
.

But, because of the symmetry of the second fundamental form, starting
instead from ⟨𝑌 ′(𝑎) , 𝑋 (𝑎)⟩, the result is the same. Thus,

⟨𝑋′(𝑎) , 𝑌 (𝑎)⟩ = ⟨𝑋 (𝑎) , 𝑌 ′(𝑎)⟩ ,

and, by Lemma 16, ⟨𝑋′ , 𝑌⟩ = ⟨𝑋 , 𝑌 ′⟩ along all of 𝛾.

Let 𝑌1, . . . , 𝑌𝑘 be a basis for the 𝑃-Jacobi fields which are perpendicular to
𝛾. Then, for any 𝑋 ∈ 𝑇⊥

𝛾 Ω, there exist continuous and piecewise smooth
functions 𝑓 1, . . . , 𝑓 𝑘 on [𝑎, 𝑏] which are uniquely defined and such that
𝑋 = 𝑓 𝑖𝑌𝑖. By the observation above,

〈
𝑌 ′
𝑖
, 𝑌

𝑗

〉
=

〈
𝑌
𝑖
, 𝑌 ′

𝑗

〉
. Then, Lemma 17

applies, and

𝐻⊥
𝛾 (𝑋, 𝑋) =

𝑏∫
𝑎

⟨𝐴 , 𝐴⟩ d𝑢 + ⟨𝑋 , 𝐵⟩|𝑏𝑎 −
〈
𝛾′(𝑎) , II

(
𝑋 (𝑎), 𝑋 (𝑎)

)〉
.

Now we show that the boundary terms cancel out. Using the fact that
𝑋 (𝑏) = 0 and the expression for 𝐵 (see Lemma 17),

⟨𝑋 , 𝐵⟩|𝑏𝑎 = −⟨𝑋 (𝑎) , 𝐵(𝑎)⟩ = − 𝑓 𝑖 (𝑎)
〈
𝑋 (𝑎) , 𝑌 ′

𝑖 (𝑎)
〉
.
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Since 𝑋 (𝑎) is tangent to 𝑃 and the 𝑌𝑖 are all 𝑃-Jacobi fields,

⟨𝑋 , 𝐵⟩|𝑏𝑎 = − 𝑓 𝑖 (𝑎)
〈
𝑋 (𝑎) , 𝑌 ′

𝑖 (𝑎)⊤
〉

= − 𝑓 𝑖 (𝑎)
〈
𝑋 (𝑎) , ĨI

(
𝑌𝑖 (𝑎), 𝛾′(𝑎)

)〉
= −

〈
𝑋 (𝑎) , ĨI

(
𝑋 (𝑎), 𝛾′(𝑎)

)〉
=

〈
II

(
𝑋 (𝑎), 𝑋 (𝑎)

)
, 𝛾′(𝑎)

〉
,

cancelling out the last term.

Finally, since 𝛾 is cospacelike and each 𝑌𝑖 is orthogonal to 𝛾, ⟨𝐴 , 𝐴⟩ ≥ 0;
it follows that 𝐻⊥

𝛾 (𝑋, 𝑋) ≥ 0. Besides, if 𝐻⊥
𝛾 (𝑋, 𝑋) = 0, then ⟨𝐴 , 𝐴⟩ must

vanish identically, implying each 𝑓 𝑖 is constant. But because 𝑋 vanishes at
𝑞, the 𝑓 𝑖 are all zero at 𝑏, and hence everywhere. Then, 𝑋 = 0.

2. By Lemma 25, 𝐻⊥
𝛾 has a nontrivial kernel, and is therefore not definite.

Thus it remains to show that 𝐻⊥
𝛾 (𝑋, 𝑋) ≥ 0 for all nonvanishing 𝑋 ∈ 𝑇𝛾Ω.

Take one such 𝑋 ∈ 𝑇⊥
𝛾 Ω, and let 𝑟𝑛 = 𝑏 − 1/𝑛. For each 𝑛 large enough

that 𝑟𝑛 falls within the last smooth segment of 𝑋 , define 𝑌𝑛 as the parallel
transport of 𝑋 (𝑟𝑛) along 𝛾 and

𝑋𝑛 (𝑢) =


𝑋 (𝑢) , for 𝑢 ∈ [𝑎, 𝑟𝑛](
1 − 2

𝑢 − 𝑟𝑛
𝑏 − 𝑟𝑛

)
𝑌𝑛 (𝑢) , for 𝑢 ∈

(
𝑟𝑛,

𝑏+𝑟𝑛
2

)
0 , for 𝑢 ∈

[
𝑏+𝑟𝑛

2 , 𝑏

] .

Then, the sequence
{
𝐻⊥
𝛾 (𝑋𝑛, 𝑋𝑛)

}
converges to 𝐻⊥

𝛾 (𝑋, 𝑋).4 But, be-
cause there are no conjugate points to 𝑎 on (𝑎, 𝑟𝑛], part 1 applies, and
𝐻⊥
𝛾 (𝑋𝑛, 𝑋𝑛) > 0. Hence 𝐻⊥

𝛾 (𝑋, 𝑋) ≥ 0 and 𝐻⊥
𝛾 is positive semidefinite.

3. By Proposition 13, using the fact that 𝛾 is cospacelike, we can always obtain
𝑋 ∈ 𝑇⊥

𝛾 Ω such that 𝐻⊥
𝛾 (𝑋, 𝑋) > 0. So it remains to show that the opposite

inequality also occurs.

By hypothesis, there exists a nontrivial 𝑃-Jacobi field𝑌 on 𝛾 which vanishes

4See footnote 3 on page 30 and Appendix B.
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at 𝑟. Let 𝑋 = 𝑌 on [𝑎, 𝑟) and 𝑋 = 0 on [𝑟, 𝑏]. Since 𝑌 is not identically
zero, 𝑋′(𝑟−) ≠ 0. Let 𝑍 ∈ 𝑇𝛾Ω with 𝑍 (𝑎) = 0 and 𝑍 (𝑟) = −𝑋′(𝑟−), and let
also 𝛿 > 0.

𝐻⊥
𝛾 (𝑋 + 𝛿𝑍, 𝑋 + 𝛿𝑍) = 𝐻⊥

𝛾 (𝑋, 𝑋) + 2𝛿𝐻⊥
𝛾 (𝑋, 𝑍) + 𝛿2𝐻⊥

𝛾 (𝑍, 𝑍) .

Because 𝑋 is a piecewise Jacobi field, the first term vanishes. Meanwhile,
because 𝑋 vanishes identically on [𝑟, 𝑏], the second one reduces to

2𝛿𝐻⊥
𝛾 (𝑋, 𝑍) = 2𝛿

𝑟∫
𝑎

[⟨𝑋′ , 𝑍′⟩ + ⟨𝑅(𝑋, 𝛾′)𝑍 , 𝛾′⟩] d𝑢 .

Using ⟨𝑋′ , 𝑍′⟩ = ⟨𝑋′ , 𝑍⟩′ − ⟨𝑋′′ , 𝑍⟩,

2𝛿𝐻⊥
𝛾 (𝑋, 𝑍) = 2𝛿

𝑟∫
𝑎

[
⟨𝑋′ , 𝑍⟩′ − ⟨𝑋′′ + 𝑅(𝑋, 𝛾′)𝛾′ , 𝑍⟩

]
d𝑢

= 2𝛿⟨𝑋′(𝑟−) , 𝑍 (𝑟)⟩ = −2𝛿⟨𝑋′(𝑟−) , 𝑋′(𝑟−)⟩ < 0 ,

the inequality stemming from the fact that 𝛾 is cospacelike. Then, for
sufficiently small 𝛿, 𝐻⊥

𝛾 (𝑋 + 𝛿𝑍, 𝑋 + 𝛿𝑍) < 0. □

2.5.2 The lightlike case

Now we turn to the problem of locating focal points of a submanifold along a
lightlike geodesic. The following result is an extension of Proposition 22; it shows
that for a 𝑃-Jacobi field to be the variation vector field of a curve 𝛾 by lightlike
geodesics perpendicular to 𝑃, it must satisfy one extra condition.

Proposition 27. Let 𝛾 be a lightlike geodesic normal to 𝑃, a semi-Riemannian
submanifold of 𝑀 . A 𝑃-Jacobi field on 𝛾 is the variation vector field of a variation
of 𝛾 by lightlike 𝑃-normal geodesics if, and only if, it is orthogonal to 𝛾.

Proof. Let Φ be such a variation. Since the longitudinal curves are all lightlike,
⟨𝑈 (𝑢, 𝑣) , 𝑈 (𝑢, 𝑣)⟩—and hence also 𝐸Φ(𝑠)—identically vanishes. Then, the first
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variation formula (2.7) implies that ⟨𝑊′ , 𝛾′⟩ ≡ 0. By the Levi-Civita property,

⟨𝑊′ , 𝛾′⟩ = ⟨𝑊 , 𝛾′⟩′ .

But, since 𝑊 (𝑎) is orthogonal to 𝛾′(𝑎), the equation above implies that 𝑊 (𝑢)
remains perpendicular to 𝛾′(𝑢) for all 𝑢.

For the converse, let 𝑌 be a 𝑃-Jacobi field orthogonal to 𝛾. Then,

⟨𝑌 ′ , 𝛾′⟩ = ⟨𝑌 , 𝛾′⟩′ ≡ 0 ,

Specialising to 𝑢 = 𝑎, we conclude that𝑌 ′(𝑎)⊥, the component of𝑌 ′(𝑎) orthogonal
to 𝑃, is perpendicular to 𝛾′(𝑎) (the tangent component does not contribute to the
inner product above). 𝛾′(𝑎) and𝑌 ′(𝑎)⊥ span a degenerate subspace of𝑇⊥

𝛾(𝑎)𝑃, and,
since 𝛾′(𝑎) itself is lightlike, we can infer that 𝑌 ′(𝑎)⊥ canonically corresponds to
a vector which is tangent to the lightcone in 𝑇⊥

𝛾(𝑎)𝑃 at 𝛾′(𝑎).5 One can therefore
construct a curve 𝜆 on the lightcone which has that vector as its initial velocity.
Note that each point along that curve is a lightlike vector normal to 𝑃.

Now, take a curve 𝜎 on 𝑃 such that 𝜎′(0) = 𝑌 (𝑎). We construct a vector field
𝑍 along 𝜎 consisting of lightlike vectors normal to 𝑃 in the following way: for
each 𝑣, let 𝑍 (𝑣) be the normal parallel transport of 𝜆(𝑣) along 𝜎. Then,

𝑍′(0) = ĨI
(
𝜎′(0), 𝑍 (0)

)
+ 𝑌 ′(𝑎)⊥ .6

Now, we recognise in the previous formula 𝜎′(0) = 𝑌 (𝑎) and 𝑍 (0) = 𝛾′(𝑎); using
the fact that 𝑌 is a 𝑃-Jacobi field,

𝑍′(0) = 𝑌 ′(𝑎)⊤ + 𝑌 ′(𝑎)⊥ = 𝑌 ′(𝑎) .

5For a proof, see e.g. the section “Lorentz Causal Character” in [32], Chapter 5.
6To see this, note that we can define an auxiliary two-parameter vector field 𝜁 (𝑢, 𝑣) by first

letting 𝜁 (0, 𝑣) = 𝜆(𝑣) and then defining 𝜁 (𝑢, 𝑣) as the normal parallel transport of 𝜁 (0, 𝑣) along
𝜎 up to parameter 𝑢. With this, 𝑍 (𝑣) becomes the composition of 𝜁 with the curve 𝑢 = 𝑣 in the
(𝑢, 𝑣)-parameter space, and 𝑍 ′ (0) can be calculated in terms of the covariant derivatives of the
curves 𝜁 (0, 𝑣) and 𝜁 (𝑢, 0) at 𝑣 = 0 and 𝑢 = 0, respectively. The first term reduces to 𝑌 ′ (𝑎)⊥,
because of the way the curve 𝜆 was constructed. Meanwhile, the second becomes ĨI

(
𝜎′ (0), 𝑍 (0)

)
,

because 𝜁 (𝑢, 0) is a normal parallel transport of 𝜁 (0, 0) = 𝑍 (0) along 𝜎.
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From this point, the construction proceeds exactly as in Proposition 22:

Φ(𝑢, 𝑣) = exp
(
(𝑢 − 𝑎)𝑍 (𝑣)

)
defines a variation of 𝛾 by 𝑃-normal lightlike geodesics whose variational vector
field which coincides with 𝑌 , since they are both Jacobi fields satisfying the same
initial conditions at 𝑎. □

Theorem 28. Let 𝑃 be a spacelike submanifold of a Lorentz manifold 𝑀 . If
𝑃 has no focal points along a normal lightlike geodesic 𝛾, then 𝐻⊥

𝛾 is positive
semidefinite. Furthermore, 𝐻⊥

𝛾 (𝑋, 𝑋) = 0 implies that 𝑋 is tangent to 𝛾.

Proof. Let 𝑌1, . . . , 𝑌𝑘 be a basis for the 𝑃-Jacobi fields perpendicular along
𝛾, with 𝑌1(𝑢) = (𝑢 − 𝑎)𝛾′(𝑢). Because there are no focal points along 𝛾,{
𝑌1(𝑢), . . . , 𝑌𝑚−1(𝑢)

}
remains a basis for 𝛾(𝑢)⊥ for every 𝑢 along 𝛾, and any

𝑋 ∈ 𝑇⊥
𝛾 Ω can be written as 𝑓 𝑖𝑌𝑖, for some set of piecewise smooth functions

𝑓1, . . . , 𝑓𝑚−1. Once again, by Lemmas 16 and 17,

⟨𝑋′ , 𝑋′⟩ + ⟨𝑅(𝑋, 𝛾′)𝑋 , 𝛾′⟩ = ⟨𝐴 , 𝐴⟩ + ⟨𝑋 , 𝐵⟩′ ,

and𝐻⊥
𝛾 (𝑋, 𝑋) reduces to

𝑏∫
𝑎

⟨𝐴 , 𝐴⟩ d𝑢. Since 𝐴 is orthogonal to 𝛾 and 𝛾 is lightlike,

⟨𝐴 , 𝐴⟩ ≥ 0, with equality holding if and only if 𝐴 is tangent to 𝛾. Therefore,
𝐻⊥
𝛾 (𝑋, 𝑋) ≥ 0. Equality holds if and only if 𝑓 2, . . . , 𝑓 𝑚−1 are all constant. But

𝑋 (𝑞) = 0 implies that 𝑓 2, . . . , 𝑓 𝑚−1 vanish at that point, and hence identically, so
that 𝑋 = 𝑓 1𝑌1, which is tangent to 𝛾. □

2.6 First consequences

We conclude this chapter by deducing alternative criteria for the presence of
focal points along a timelike or lightlike geodesic, using Theorems 26 and 28,
respectively.

Consider the following setup: let 𝑃 be a spacelike hypersurface of a Lorentzian
manifold 𝑀 (so dim 𝑃 = 𝑚 − 1) and 𝛾 : [𝑎, 𝑏] → 𝑀 a timelike geodesic issuing
orthogonally from 𝑃 at 𝛾(𝑎) = 𝑝. Take an orthonormal basis {𝑒1, . . . , 𝑒𝑚−1}
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for 𝑇𝑝𝑃, and let 𝐸1, . . . , 𝐸𝑚−1 be the parallel transports of 𝑒1, . . . , 𝑒𝑚−1 along 𝛾,
respectively. Then, for each 𝑢 ∈ [𝑎, 𝑏], {𝐸1(𝑢), . . . , 𝐸𝑚−1(𝑢)} forms an orthonor-
mal basis for 𝛾′(𝑢)⊥. If 𝑓 : [𝑎, 𝑏] → R is a piecewise smooth function with
𝑓 (𝑎) = 1 and 𝑓 (𝑏) = 0, then, for each 𝑖, 𝑓 𝐸𝑖 is an orthogonal vector field along 𝛾
which is tangent to 𝑃 at 𝑎 and vanishes at 𝑏. In other words, 𝑓 𝐸𝑖 is in 𝑇⊥

𝛾 Ω, and
hence in the domain of 𝐻⊥

𝛾 , so that we can calculate

𝐻⊥
𝛾 ( 𝑓 𝐸𝑖, 𝑓 𝐸𝑖) = − 𝑓 (𝑎)2⟨𝛾′(𝑎) , II(𝑒𝑖, 𝑒𝑖)⟩ +

+
𝑏∫

𝑎

[
𝑓 ′(𝑢)2⟨𝐸𝑖 , 𝐸𝑖⟩ + 𝑓 (𝑢)2⟨𝑅(𝐸𝑖, 𝛾′)𝐸𝑖 , 𝛾′⟩

]
d𝑢 .

Summing over all 𝑖,

𝑚−1∑︁
𝑖=1

𝐻⊥
𝛾 ( 𝑓 𝐸𝑖, 𝑓 𝐸𝑖) = −

𝑚−1∑︁
𝑖=1

⟨𝛾′(𝑎) , II(𝑒𝑖, 𝑒𝑖)⟩ +

+
𝑏∫

𝑎

[
(𝑚 − 1) 𝑓 ′(𝑢)2 + 𝑓 (𝑢)2

𝑚−1∑︁
𝑖=1

⟨𝑅(𝐸𝑖, 𝛾′)𝐸𝑖 , 𝛾′⟩
]

d𝑢 .

The sum in the boundary term is proportional to the mean curvature vector field
of 𝑃, which is defined as

𝐻 (𝑝) = 1
𝑚 − 1

𝑚−1∑︁
𝑖=1

II(𝑒𝑖, 𝑒𝑖) .7

For the sum within the integral, we have

𝑚−1∑︁
𝑖=1

⟨𝑅(𝐸𝑖, 𝛾′)𝐸𝑖 , 𝛾′⟩ = −
𝑚−1∑︁
𝑖=1

⟨𝑅(𝐸𝑖, 𝛾′)𝛾′ , 𝐸𝑖⟩ .

7 More generally, if 𝑃 is any semi-Riemannian submanifold and the 𝑒𝑖 form an orthonormal
basis for 𝑇𝑝𝑃, then

𝐻 (𝑝) :=
1

dim 𝑃

dim 𝑃∑︁
𝑖=1

𝜎𝑖 II(𝑒𝑖 , 𝑒𝑖) ,

where 𝜎𝑖 = ⟨𝑒𝑖 , 𝑒𝑖⟩. It is regrettable that the mean curvature is typically denoted by the letter 𝐻,
which is already in use in this text for the Hessian. However, this should not lead to any confusion,
as the Hessian will always carry a subscript to indicate the curve on which it is defined.
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We can define a vector field 𝐸0(𝑢) along 𝛾 which completes 𝐸1(𝑢), . . . , 𝐸𝑚−1(𝑢)
to an orthonormal basis of 𝑇𝛾(𝑢)𝑀 , and then add and subtract ⟨𝑅(𝐸0, 𝛾

′)𝛾′ , 𝐸0⟩
in the formula above to obtain Ric(𝛾′, 𝛾′):

𝑚−1∑︁
𝑖=1

⟨𝑅(𝐸𝑖, 𝛾′)𝐸𝑖 , 𝛾′⟩ = −Ric(𝛾′, 𝛾′) − ⟨𝑅(𝐸0, 𝛾
′)𝛾′ , 𝐸0⟩ .

However, the field 𝐸0 is collinear with 𝛾′, and hence the extra term vanishes, by
the antisymmetry of 𝑅. We find

𝑚−1∑︁
𝑖=1

𝐻⊥
𝛾 ( 𝑓 𝐸𝑖, 𝑓 𝐸𝑖) = −(𝑚 − 1)⟨𝛾′(𝑎) , 𝐻 (𝑝)⟩ +

+
𝑏∫

𝑎

[
(𝑚 − 1) 𝑓 ′(𝑢)2 − Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2] d𝑢

Now, suppose that for some function 𝑓 obeying the previous assumptions,

𝑏∫
𝑎

[
(𝑚 − 1) 𝑓 ′(𝑢)2 − Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2] d𝑢 ≤ (𝑚 − 1)⟨𝛾′(𝑎) , 𝐻 (𝑝)⟩ . (2.13)

Then,

𝑚−1∑︁
𝑖=1

𝐻⊥
𝛾 ( 𝑓 𝐸𝑖, 𝑓 𝐸𝑖) ≤ 0 .

But, for this to hold, at least one of the terms in the sum on the left hand side has
to be nonpositive, which, by Theorem 26, implies the existence of a focal point of
𝑃 along 𝛾 in (𝑎, 𝑏]. If the inequality in (2.13) is strict, the focal point lies within
(𝑎, 𝑏).

We shall call the function 𝑘 : 𝑁𝑃 → R given by

𝑘 (𝑧) =
〈
𝑧 , 𝐻

(
𝜋(𝑧)

)〉
=

1
𝑚 − 1

𝑚−1∑︁
𝑖=1

⟨𝑧 , II(𝑒𝑖, 𝑒𝑖)⟩

the convergence of 𝑃 (the projection 𝜋(𝑧) simply gives the base point of the normal
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vector 𝑧). The reason for this nomenclature is as follows. Let 𝑤 be a unit tangent
vector to 𝑃 at the point 𝑝, 𝛾 : [𝑎, 𝑏] → 𝑀 a timelike geodesic issuing orthogonally
from 𝑃 at 𝑝, and consider a variation of 𝛾 by normal geodesics whose variation
vector field is such that 𝑊 (𝑎) = 𝑤. Then, ∥𝑊 ∥ =

√︁
⟨𝑊 , 𝑊⟩ can be used as an

estimate of the distance between 𝛾 and neighbouring geodesics in the variation.
Its derivative along 𝛾 is

∥𝑊 ∥′ = ⟨𝑊′ , 𝑊⟩√︁
⟨𝑊 , 𝑊⟩

,

so that, at the starting point of the curve,

∥𝑊 ∥′(𝑎) = ⟨𝑊′(𝑎) , 𝑤⟩√︁
⟨𝑤 , 𝑤⟩

=
〈
𝑊′(𝑎)⊤ , 𝑤

〉
=

=

〈
ĨI
(
𝑤, 𝛾′(𝑎)

)
, 𝑤

〉
= −⟨II(𝑤, 𝑤) , 𝛾′(𝑎)⟩ .

Therefore, the geodesics around 𝛾 have an initial tendency to converge towards
𝛾 if ⟨II(𝑤, 𝑤) , 𝛾′(𝑎)⟩ > 0 and to diverge from it if ⟨II(𝑤, 𝑤) , 𝛾′(𝑎)⟩ < 0. The
convergence 𝑘 is an averaged version of this quantity over all directions tangent to
𝑃.

With this definition, the argument we have presented in the preceding para-
graphs can be restated as the following proposition:

Proposition 29. Let𝑃 be a smooth spacelike hypersurface of𝑀 and 𝛾 : [𝑎, 𝑏] → 𝑀

a timelike geodesic issuing orthogonally from 𝑃. If there exists a piecewise smooth
function 𝑓 : [𝑎, 𝑏] → R such that 𝑓 (𝑎) = 1, 𝑓 (𝑏) = 0 and

𝑏∫
𝑎

[
(𝑚 − 1) 𝑓 ′(𝑢)2 − Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2] d𝑢 ≤ (𝑚 − 1)𝑘

(
𝛾′(𝑎)

)
, (2.14)

where 𝑘 denotes the convergence of 𝑃, then there is a focal point of 𝑃 along 𝛾
within (𝑎, 𝑏]. If the strict inequality holds, that focal point lies in (𝑎, 𝑏) instead.

The corollary below is an immediate consequence of this result:

Corollary 30. Let 𝑃 be a smooth spacelike hypersurface of 𝑀 and 𝛾 : [0, 𝑏] → 𝑀

a timelike geodesic issuing orthogonally from 𝑃. If:
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1. Ric(𝛾′, 𝛾′) ≥ 0 at every point along 𝛾; and

2. 𝑘
(
𝛾′(0)

)
> 0,

then, provided that 𝑏 ≥ 1/𝑘
(
𝛾′(0)

)
, there is a focal point of 𝑃 along 𝛾 within(

0, 1/𝑘
(
𝛾′(0)

) ]
. Note that condition 1 holds, in particular, if (𝑀, 𝑔) satisfies the

strong energy condition.

Proof. Let us denote 𝑘
(
𝛾′(0)

)
simply by 𝑘 for short, and define 𝑓 (𝑢) = 1 − 𝑘𝑢.

Then, 𝑓 (0) = 1, 𝑓 (1/𝑘) = 0 and 𝑓 ′(𝑢) = 𝑘 . Since 𝑏 ≥ 1/𝑘 , it is possible to
restrict 𝛾 to [0, 1/𝑘] and calculate

1/𝑘∫
0

[
(𝑚 − 1) 𝑓 ′(𝑢)2 − Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2] d𝑢 = (𝑚 − 1)𝑘 −

1/𝑘∫
0

Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2 d𝑢 .

Because Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2 ≥ 0 for all 𝑢, the result above is no greater than (𝑚−1)𝑘 ,
and Proposition 29 guarantees the existence of the focal point. □

There is also an analogue of Proposition 29 for lightlike geodesics:

Proposition 31. Let 𝑃 be a spacelike submanifold of 𝑀 with dimension 𝑚 − 2,
and let 𝛾 : [𝑎, 𝑏] → 𝑀 be a lightlike geodesic issuing orthogonally from 𝑃 at
𝑝 = 𝛾(𝑎). Suppose there exists a piecewise smooth function 𝑓 : [𝑎, 𝑏] → R such
that 𝑓 (𝑎) = 1, 𝑓 (𝑏) = 0 and

𝑏∫
𝑎

[
(𝑚 − 2) 𝑓 ′(𝑢)2 − Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2] d𝑢 ≤ (𝑚 − 2)𝑘

(
𝛾′(𝑎)

)
. (2.15)

Then, there is a focal point of 𝑃 along 𝛾 in (𝑎, 𝑏]. If the inequality is strict, the
focal point is in (𝑎, 𝑏) instead.

Proof. The proof is very similar to the previous one. Let 𝑒1, . . . , 𝑒𝑚−2 be an or-
thonormal basis for𝑇𝑝𝑃 and take parallel transports along 𝛾 to get {𝐸1, . . . , 𝐸𝑚−2}.
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For the given function 𝑓 ,

𝑚−2∑︁
𝑖=1

𝐻⊥
𝛾 ( 𝑓 𝐸𝑖, 𝑓 𝐸𝑖) = −

〈
𝛾′(𝑎) ,

𝑚−2∑︁
𝑖=1

II(𝑒𝑖, 𝑒𝑖)
〉
+

+
𝑏∫

𝑎

[
(𝑚 − 2) 𝑓 ′(𝑢)2 +

𝑚−2∑︁
𝑖=1

⟨𝑅(𝐸𝑖, 𝛾′)𝐸𝑖 , 𝛾′⟩ 𝑓 (𝑢)2

]
d𝑢 .

The sum in the boundary term becomes (𝑚 − 2)𝐻 (𝑝), as before. However, this
time care must be taken when defining the basis on which to calculate the Ricci
tensor. Let 𝑡 be a unit timelike vector in 𝑇𝑝𝑀 orthogonal to 𝑃 and 𝑇 its parallel
transport along 𝛾. Then, define

𝑆 = 𝑇 + 1
⟨𝑇 , 𝛾′⟩𝛾

′ .

𝑆 is unit spacelike and is orthogonal to 𝑇 and to each of the 𝐸𝑖; therefore,
{𝑇, 𝑆, 𝐸1, . . . , 𝐸𝑚−2} is an orthonormal basis, which we can use to obtain:

Ric(𝛾′, 𝛾′) = −⟨𝑅(𝑇, 𝛾′)𝛾′ , 𝑇⟩ + ⟨𝑅(𝑆, 𝛾′)𝛾′ , 𝑆⟩ +
𝑚−2∑︁
𝑖=1

⟨𝑅(𝐸𝑖, 𝛾′)𝛾′ , 𝐸𝑖⟩ .

However,

⟨𝑅(𝑆, 𝛾′)𝛾′ , 𝑆⟩ = ⟨𝑅(𝑇, 𝛾′)𝛾′ , 𝑇⟩ + 1
⟨𝑇 , 𝛾′⟩ ⟨𝑅(𝑇, 𝛾

′)𝛾′ , 𝛾′⟩ +

+ 1
⟨𝑇 , 𝛾′⟩ ⟨𝑅(𝛾

′, 𝛾′)𝛾′ , 𝑇⟩ + 1
⟨𝑇 , 𝛾′⟩2 ⟨𝑅(𝛾

′, 𝛾′)𝛾′ , 𝛾′⟩ ,

and, by the antisymmetry of 𝑅, all terms but the first vanish. Therefore,

Ric(𝛾′, 𝛾′) =
𝑚−2∑︁
𝑖=1

⟨𝑅(𝐸𝑖, 𝛾′)𝛾′ , 𝐸𝑖⟩

= −
𝑚−2∑︁
𝑖=1

⟨𝑅(𝐸𝑖, 𝛾′)𝐸𝑖 , 𝛾′⟩ .
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Using this result, we find

𝑚−2∑︁
𝑖=1

𝐻⊥
𝛾 ( 𝑓 𝐸𝑖, 𝑓 𝐸𝑖) = −(𝑚 − 2)⟨𝛾′(𝑎) , 𝐻 (𝑝)⟩ +

+
𝑏∫

𝑎

[
(𝑚 − 2) 𝑓 ′(𝑢)2 − Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2] d𝑢 .

Applying the hypothesis on 𝑓 , we conclude that the sum on the left is nonpositive,
which can only happen if at least one of the terms is also nonpositive. Thus,
Theorem 28 guarantees the existence of the focal point. □

As in the timelike case, we have the following simple consequence:

Corollary 32. Let 𝑃 be an (𝑚 − 2)-dimensional spacelike submanifold of 𝑀 and
𝛾 : [0, 𝑏] → 𝑀 a lightlike geodesic issuing orthogonally from 𝑃. If:

1. Ric(𝛾′, 𝛾′) ≥ 0 at every point along 𝛾, and

2. 𝑘
(
𝛾′(0)

)
> 0,

then, if 𝑏 ≥ 1/𝑘
(
𝛾′(0)

)
, there is a focal point of 𝑃 along 𝛾 in

(
0, 1/𝑘

(
𝛾′(0)

) ]
.

Note that condition 1 is true, in particular, if the spacetime verifies the null energy
condition.

Proof. Again, let 𝑘 denote 𝑘
(
𝛾′(0)

)
and define 𝑓 (𝑢) = 1 − 𝑘𝑢. Then,

1/𝑘∫
0

[
(𝑚 − 2) 𝑓 ′(𝑢)2 − Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2] d𝑢 = (𝑚 − 2)𝑘 −

1/𝑘∫
0

Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2 d𝑢 .

The integrand Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2 being nonnegative, the quantity above is no greater
than (𝑚 − 2)𝑘 , and the existence of a focal point follows from the previous pro-
position. □

Propositions 29 and 31 are never directly stated in O’Neill’s textbook [32]; in-
stead, they are only a step in the derivation of Corollaries 30 and 32 as consequences
of Theorems 26 and 28. It was observed by Fewster and Kontou, in [31], that these



CHAPTER 2. VARIATIONAL METHODS 50

Propositions are themselves useful criteria for locating focal points along timelike
and lightlike geodesics. Furthermore, as will be shown in greater detail in the next
chapter, criteria of this form are particularly well-suited for attempts to relax the
hypotheses of the singularity theorems of General Relativity to work with quantum
energy conditions.



Chapter 3

Applications to singularity theorems

In this chapter, we present a review of the developments in the article [31],
building upon the methods of Chapter 2 to arrive at the proofs of singularity the-
orems with weakened energy conditions. In Section 3.1, some auxiliary concepts
and results are given; in Section 3.2, two points of comparison are established
between the present setup and previous work on the subject; the introduction of
the energy conditions used and the proofs of the singularity theorems themselves
are the subject of Section 3.3; finally, in Section 3.4, we present our final remarks
and conclusions.

3.1 Some auxiliary definitions and results

In this section, we present a few concepts appearing in the statements of the
singularity theorems, some of which have been mentioned but not properly defined
up until this point; most importantly, we define a globally hyperbolic spacetime
and a future-converging submanifold. We also state two propositions which,
when paired with our previous results on focal points, will give the proofs of the
singularity theorems. The discussion will be brief and devoid of proofs, as the main
goal here is simply the completeness of the text. For more in-depth treatments of
these subjects, we direct the reader to the literature on Semi-Riemannian Geometry
and General Relativity; see, e.g., [32, 34, 35]

51
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3.1.1 Causality conditions

A causal geodesic 𝛾 : [𝑎, 𝑏] → 𝑀 is said to be inextendible if it cannot be ex-
tended to an interval containing [𝑎, 𝑏] whilst still remaining a causal geodesic. The
concept of inextendibility is fundamental when dealing with the causal properties
of spacetime, and is featured in the very definition of singularity:

Definition 33. A spacetime is said to be singular if it contains a causal geodesic
which is inextendible and incomplete, in the sense that its affine parameter does
not run from −∞ to ∞.

Inextendibility is also in the basis of the concept of global hyperbolicity, which
is the most relevant causality condition for our purposes:

Definition 34. A spacetime is globally hyperbolic if it contains a Cauchy surface,
i.e., a smooth spacelike hypersurface which is intercepted by every inextendible
causal geodesic exactly once.

Global hyperbolicity can be defined in several alternative equivalent ways, and
implies that the spacetime verifies various other less stringent causality conditions.
In order to better characterise globally hyperbolic spacetimes, we mention in
passing some of these alternative definitions and causal properties:

• If a spacetime contains a Cauchy surface, it also contains infinitely many
others, and they are all diffeomorphic. The spacetime can then be described
as R × 𝑆, where 𝑆 is any of its Cauchy surfaces.

• A globally hyperbolic spacetime possesses a global time function, i.e., a
smooth function whose gradient is everywhere timelike. This property is
known as stable causality. The existence of a global timelike vector field
(call it 𝑇) also makes 𝑀 a time-orientable spacetime. Then, each causal
vector 𝑧 tangent to 𝑀 can be classified as future-pointing if ⟨𝑧 , 𝑇⟩ < 0
or past-pointing if ⟨𝑧 , 𝑇⟩ > 0. Causal curves are similarly classified as
future- or past-directed according to whether their velocity vectors are
future- or past-pointing.
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• A globally hyperbolic spacetime also satisfies the chronology condition,
i.e., it does not contain any closed timelike curves. In physical terms, time
travel is impossible.

Global hyperbolicity and Cauchy surfaces are intimately related with the notion
of determinism in classical physics. Indeed, any causal influence which reaches
an event to the future of a Cauchy surface 𝑆 must first pass through 𝑆. Therefore,
with complete information on 𝑆, one should be able to describe the entire future
of the Universe. As such, globally hyperbolic spaces are the natural setting for the
initial value formulation of General Relativity, which seeks to rephrase the theory
as the time evolution, via the Einstein equation, of initial data given on a Cauchy
surface (say, the configuration of the Universe at the present time).

3.1.2 Future-converging submanifolds

Definition 35. Let 𝑃 be a spacelike submanifold of a Lorentz manifold 𝑀 with
codimension greater than or equal to 2. We say that 𝑃 is future-converging if its
mean curvature vector field1 𝐻 is timelike and past-pointing at each point.

Recalling the definition of the covergence of 𝑃 (see page 45), it is clear that, if
𝑃 is future-converging, then, for every future-pointing causal vector 𝑧 orthogonal
to 𝑃, 𝑘 (𝑧) = ⟨𝑧 , 𝐻⟩ > 0. Then, according to the geometrical interpretation of
the convergence previously discussed, all future-directed causal geodesics issuing
orthogonally from 𝑃 have an initial tendency to draw closer to its neighbours.

3.1.3 Causality and focal points

We begin this subsection by introducing some shorthand notation and conven-
tions which will be used to work with the criteria established in Propositions 29
and 31 from here on out. When dealing with timelike geodesics, the hypotheses
of the singularity theorems will always involve a certain Cauchy surface 𝑆, which
will replace the generic spacelike submanifold 𝑃 considered up until this point.
Since 𝑆 is a hypersurface, there is a single timelike direction orthogonal to 𝑆 at

1Refer back to page 44 for the definition.
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each point. We can therefore replace (𝑚 − 1)𝑘
(
𝛾(𝑎)

)
, in the right hand side of

Equation 2.14, by a scalar function 𝐾 , obtained by constraining 𝛾 to be the unique
future-directed unit-speed timelike geodesic issuing orthogonally from 𝑆 at that
point. With this, we can rewrite Equation 2.14 in the shorter form 𝐽 [ 𝑓 ] ≤ 𝐾 ,
where

𝐽 [ 𝑓 ] :=
𝑏∫

𝑎

[
(𝑚 − 1) 𝑓 ′(𝑢)2 − Ric(𝛾′, 𝛾′) 𝑓 (𝑢)2] d𝑢 . (3.1)

Similarly, in the lightlike case, we will replace 𝑃 with an achronal, compact,
smooth, future-converging submanifold𝑇 of dimension𝑚−2. This allows us to fix
a parametrisation for any future-directed lightlike geodesic 𝛾 issuing orthogonally
from𝑇 , which cannot, in general, be done for lightlike curves in any canonical way.
By hypothesis, the mean curvature vector field of 𝑇 is past-pointing and timelike.
Therefore, it can be written as 𝐻 = 𝐾𝑡/(𝑚 − 2), where 𝑡 is a unit past-pointing
timelike vector field and 𝐾 a positive function on 𝑇 . We can then choose the
unique affine parametrisation for 𝛾 such that ⟨𝛾′(𝑎) , 𝑡⟩ = 1. With this choice,
the criterion (2.15) once again takes the form 𝐽 [ 𝑓 ] ≤ 𝐾 , with 𝐽 [ 𝑓 ] defined as
above, but with the (𝑚 − 1) factor replaced by (𝑚 − 2). For a lightlike geodesic
𝛾 parametrised in this way, we refer to the length of the parameter interval as the
𝑇-length of 𝛾.

As was mentioned in Chapter 1, a crucial step in the proofs of singularity
theorems is establishing that, if one assumes causal geodesic completeness, global
hyperbolicity is at odds with the existence of focal points along every causal
geodesic issuing normally from a certain spacelike submanifold. Then, the initial
condition and the energy condition are used to show that, indeed, every such causal
geodesic contains a focal point, which is a contradiction and forces one to discard
the assumption of completeness.

Propositions 36 and 37, stated below without proof, establish this relationship
between global hyperbolicity and focal points; the first one works within the setup
of a Hawking-type singularity theorem, and the second in the Penrose case. These
results are seldom stated thus isolated in the literature, and are usually simply a
step in the proofs of the singularity theorems.
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Proposition 36. Let 𝑀 be a globally hyperbolic spacetime and 𝑆 a smooth and
compact Cauchy surface in 𝑀 . If every future-directed timelike geodesic which
issues orthogonally from 𝑆 and contains no focal points of 𝑆 has proper length
less than 𝑏, then every future-directed timelike curve issuing from 𝑆 has proper
length less than 𝑏 (and 𝑀 is therefore future timelike geodesically incomplete).

Proposition 37. Let 𝑀 be a globally hyperbolic spacetime with non-compact
Cauchy surface, and let 𝑇 be a smooth (𝑚−2)-dimensional spacelike submanifold
of 𝑀 which is achronal2 and future-converging. If every future-directed lightlike
geodesic issuing orthogonally from 𝑇 with 𝑇-length at least 𝑏 contains a focal
point of 𝑇 , then there exists an inextendible lightlike geodesic orthogonal to 𝑇 with
𝑇-length less than 𝑏 (and 𝑀 is therefore future lightlike geodesically incomplete).

3.2 Relations to previous work

Before proceeding to the proofs of the singularity theorems, we will follow
two enlightening comments by Fewster and Kontou in [31] about the relations
between their work and previous developments in the field. The first one regards
the connection between the variational method used in their paper and the more
traditional approach to singularity theorems, based on the Raychaudhuri equation.
In the variational framework, the criterion for the existence of a focal point along a
timelike geodesic is the existence of a function 𝑓 satisfying the boundary conditions
𝑓 (𝑎) = 1, 𝑓 (𝑏) = 0 and the inequality (2.14). One way to obtain a sufficient
condition for that to hold true is to search for the function 𝑓 that minimises the
functional 𝐽 defined in Equation 3.1. If such a minimising function 𝑓 exists, and
it verifies the inequality 𝐽 [ 𝑓 ] ≤ 𝐾 , then Proposition 29 guarantees the existence
of focal points. This is a standard variational problem, and the Euler-Lagrange
equation for it is

(𝑚 − 1) 𝑓 ′′ + Ric(𝛾′, 𝛾′) 𝑓 = 0 ,

2A set is achronal if it is intercepted by any timelike curve at most once.
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subject to 𝑓 (𝑎) = 1 and 𝑓 (𝑏) = 0. Performing an integration by parts on the first
term of 𝐽 and applying the boundary conditions, we find

𝐽 [ 𝑓 ] = −(𝑚 − 1) 𝑓 ′(𝑎) −
𝑏∫

𝑎

[(𝑚 − 1) 𝑓 ′′ + 𝑓 Ric(𝛾′, 𝛾′)] 𝑓 d𝑢 .

If 𝑓 satisfies the Euler-Lagrange equation, then the integral term vanishes, and the
criterion for the presence of a focal point along 𝛾 becomes

𝑓 ′(𝑎) ≥ − 𝐾

𝑚 − 1
.

If one assumes 𝑓 has no zeroes in [𝑎, 𝑏) 3, then it is possible to make the
substitution 𝜃 = (𝑚−1) 𝑓 ′/ 𝑓 . One can then entirely rephrase the problem in terms
of 𝜃.

𝜃′ = (𝑚 − 1)
(
𝑓 ′′

𝑓
− 𝑓 ′2

𝑓 2

)
By the definition of 𝜃 and the differential equation for 𝑓 ,

𝜃′ = −Ric(𝛾′, 𝛾′) − 𝜃2

𝑚 − 1
. (3.2)

The boundary conditions become 𝜃 (𝑎) = (𝑚−1) 𝑓 ′(𝑎) and 𝜃 −→
𝑢→𝑏−

−∞. Therefore,
in terms of 𝜃, the criterion for the existence of a focal point is the existence of a
solution of (3.2) such that 𝜃 −→

𝑢→𝑏−
−∞ and 𝜃 (𝑎) ≥ −𝐾/(𝑚 − 1).

Notice the formal similarity between what was just done and the role played
by the expansion 𝜃 in the standard approach to singularity theorems. There, the
Raychaudhuri equation for the evolution of a geodesic congruence leads to the
differential inequality

𝜃′ ≤ −Ric(𝛾′, 𝛾′) − 𝜃2

𝑚 − 1

for 𝜃. Then, using the Strong Energy Condition, it is possible to show that 𝜃
diverges to −∞ in finite proper time, and that is precisely the criterion for the

3Which one can always do, by redefining 𝑏 as the first root of 𝑓 if necessary.
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existence of a focal point along 𝛾 in that approach.
The second point made by Fewster and Kontou is that their results are an

extension of the ones in the 2011 paper on singularity theorems by Fewster and
Galloway [30]. This will be illustrated by showing that the energy conditions used
in [30] imply that the criterion given in Proposition 29 is satisfied.

Let 𝛾 : [0, +∞) → 𝑀 be a cospacelike geodesic issuing orthogonally from a
semi-Riemannian submanifold 𝑃, and fix a function 𝑔 ∈ C∞

0 (R) such that 𝑔(𝑢) = 1
for all 𝑢 ∈ [0, 1] and 𝑔 is nonincreasing for 𝑢 ≥ 0. Suppose there exists 𝑐 > 0 such
that

𝑐

2
+ lim inf

𝜏→+∞
©­«−

𝜏∫
0

𝑔2(𝑢/𝜏)e−2𝑐𝑢/(𝑚−1) Ric(𝛾′, 𝛾′) d𝑢ª®¬ < 𝐾 . (3.3)

This is the form of the energy conditions used in [30]. Now, the task at hand is
to use the information above to exhibit 𝑏 > 0 and 𝑓 : [0, 𝑏] → R such that our
criterion for focal points (2.14) is satisfied on 𝛾 | [0,𝑏] . The inequality above can be
rephrased as

lim inf
𝜏→+∞

𝐹 (𝜏) < 𝐾 − 𝑐

2
,

where 𝐹 (𝜏) denotes the quantity within parentheses in (3.3). If

lim inf
𝜏→+∞

𝐹 (𝜏) ≥ 𝐾 − 𝑐

2
,

then, for every 𝜀 > 0, there exists 𝜏0 > 0 such that 𝐹 (𝜏) > 𝐾 − 𝑐
2 − 𝜀 for all 𝜏 > 𝜏0.

Therefore, (3.3), which is the negation of this statement, implies the existence of
𝜀0 > 0 such that, for any 𝜏 > 0, one can find 𝜏′ > 𝜏 such that

𝐹 (𝜏′) ≤ 𝐾 − 𝑐

2
− 𝜀0 . (3.4)

Now, consider the family of functions

𝑓𝜏 (𝑢) = 𝑔(𝑢/𝜏)e−𝑐𝑢/(𝑚−1) ,
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defined for each 𝜏 > 0. We shall show that

lim
𝜏→+∞

𝜏∫
0

(𝑚 − 1) 𝑓 ′𝜏 (𝑢)2 d𝑢 =
𝑐

2
.

We have

𝑓 ′𝜏 (𝑢) =
(

1
𝜏
𝑔′(𝑢/𝜏) − 𝑐

𝑚 − 1
𝑔(𝑢/𝜏)

)
e−𝑐𝑢/(𝑚−1) ,

and therefore

𝑓 ′𝜏 (𝑢)2 =

(
1
𝜏2𝑔

′(𝑢/𝜏)2 − 2𝑐
𝜏(𝑚 − 1) 𝑔(𝑢/𝜏)𝑔

′(𝑢/𝜏) + 𝑐2

(𝑚 − 1)2𝑔
2(𝑢/𝜏)

)
e−2𝑐𝑢/(𝑚−1) .

Now, because 0 ≤ 𝑢/𝜏 ≤ 1 when 𝑢 runs from 0 to 𝜏 and 𝑔 ≡ 1 and 𝑔′ ≡ 0 on
[0, 1],

𝜏∫
0

(𝑚 − 1) 𝑓 ′𝜏 (𝑢)2 d𝑢 =
𝑐2

𝑚 − 1

𝜏∫
0

e−2𝑐𝑢/(𝑚−1) d𝑢 =
𝑐

2

(
1 − e−2𝑐𝜏/(𝑚−1)

)
.

Thus, given 𝜀 > 0, one can find 𝜏0 > 0 such that

𝜏∫
0

(𝑚 − 1) 𝑓 ′𝜏 (𝑡)2 d𝑡 ≤ 𝑐

2
+ 𝜀 , (3.5)

for all 𝜏 > 𝜏0. In particular, choose 𝜏0 such that this is true for the 𝜀0 in (3.4).
Then, choose any 𝑏 > 𝜏0 such that (3.4) holds. Adding up (3.4) and (3.5) with
𝜏′ = 𝜏 = 𝑏

𝑏∫
0

[
(𝑚 − 1)

(
𝑓 ′𝑏
)2 − 𝑓 2

𝑏 Ric(𝛾′, 𝛾′)
]

d𝑢 ≤ 𝐾 ,

as intended.
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3.3 Proving singularity theorems

This section is dedicated to the proofs of the singularity theorems with weakened
energy conditions. In Subsection 3.3.1, we introduce the energy conditions to be
assumed, and discuss the general strategy of the proof. Subsection 3.3.2 defines a
family of test functions which will be used to work with both the energy condition
and the criteria for the detection of focal points; the theorems are finally stated and
proved in Subsections 3.3.3 and 3.3.4.

3.3.1 The energy condition

We will impose the following energy condition: for any causal curve 𝛾 : 𝐼 → 𝑀

and any test function 𝑓 ∈ C∞(𝐼),∫
𝐼

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ −|| | 𝑓 | | |2 , (3.6)

where 𝜌(𝑢) denotes the energy density Ric
(
𝛾′(𝑢) , 𝛾′(𝑢)

)
and the seminorm | | | · | | |

is defined by

| | | 𝑓 | | |2 = 𝑄0(𝛾)∥ 𝑓 ∥2
2 +𝑄𝑁 (𝛾)




 𝑓 (𝑁)


2

2
. (3.7)

In the expression above, ∥·∥2 is the usual 𝐿2-norm, and 𝑄0 and 𝑄𝑁 are positive
constants (which may depend on the curve 𝛾). Note that, for the constants 𝑄0 and
𝑄𝑁 to be well-defined, it is first necessary to fix a parametrisation for 𝛾. This is
done in the ways described at the end of Section 3.1 according to whether we are
dealing with timelike or lightlike geodesics.

The form of this energy condition is inspired by quantum energy inequalities:
notice how integrating 𝜌 against the square of the test function 𝑓 is reminiscent
of how expectation values are calculated in quantum field theory, i.e., by smeared
products. Also, note how this restriction does not prevent 𝜌 from taking on negative
values, but does limit violations of positivity by imposing a lower bound for certain
time averages.

Equation 3.6 should make it clear why Propositions 29 and 31 are particularly
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well-suited to work with quantum-inspired energy inequalities: notice how the
criterion for the existence of a focal point along 𝛾 and the energy condition are
both stated in terms of a “test” function 𝑓 . The method for obtaining singularity
theorems with weakened energy hypotheses exploits this fact as follows. First, a
suitable class of functions 𝑓 is fixed. Then, the energy condition (3.6) is substituted
into the criterion for the existence of focal points (2.14), where it controls the second
term in the integral. The resulting inequality is a constraint on the convergence
𝐾 , which, if satisfied, guarantees the existence of a focal point along the curve 𝛾.
This can then be used as an initial condition for a singularity theorem; if it holds
pointwise across the entire spacelike submanifold under consideration, and the
energy condition is also verified, then the existence of a singularity follows from
Propositions 36 or 37.

There is, however, one difficulty which must be circumvented before the method
above can be applied. The function 𝑓 which appears in the criterion (2.14) is subject
to the boundary conditions 𝑓 (0) = 1 and 𝑓 (𝑏) = 0. Meanwhile, the test functions
appearing in the energy condition are of compact support, and the energy integral
has to be taken over the entirety of that support. Therefore, one cannot simply
pick the same function 𝑓 in both and integrate over the interval [0, 𝑏]. Fewster
and Kontou present two different methods for choosing the function 𝑓 so that the
information provided by the energy condition can be used in conjunction with the
criterion for focal points; these two methods lead to slightly different singularity
theorems which are each best suited for different situations. After introducing a
convenient family of test functions, we shall discuss each of these methods.

3.3.2 A class of test functions

Before proceeding with the definition of the test functions that will be used
in this text, we should mention that they are different from the ones that appear
in [31]. Fewster and Kontou construct their test functions by gluing identically
vanishing segments to a regularised incomplete gamma function of a given order
𝑀 (which is a polynomial of degree 2𝑀 − 1). Therefore, the resulting function
is not smooth, but only 2𝑀 − 1 times continuously differentiable, and the energy
condition is not immediately applicable. However, by using an approximation
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argument, the authors are able to establish that, when one chooses the order 𝑀
suitably with respect to 𝑁 (as appearing in the definition of the seminorm (3.7)),
the energy inequality extends to the class of functions they use. Here, we shall
attempt to bypass the need for this argument by defining test functions which are
actually smooth.

To this end, we present a family of smooth, compactly supported functions on
the real line whose 𝐿2-norms (as well as those of their derivatives) can be neatly
expressed in terms of the Euler gamma function. Throughout, we will often make
use of the following data on trigonometric functions:

d
d𝑥

sec 𝑥 = tan 𝑥 sec 𝑥
d
d𝑥

tan 𝑥 = sec2𝑥

d
d𝑥

tan2𝑥 =
d
d𝑥

sec2𝑥 = 2 tan 𝑥 sec2𝑥

For some real polynomial 𝑃 and some integer 𝑘 ≥ 1, consider the function
given by

𝑔(𝑥) = sec𝑘𝑥 𝑃(tan 𝑥) exp
(
− tan2𝑥

2

)
, (3.8)

on (−𝜋/2 , 𝜋/2), and vanishing elsewhere. The exponential factor controls the
divergences of the tangent and the secant near ±𝜋/2, thus making the connection
with the identically vanishing parts of 𝑔 smooth. This can be seen, for example,
by applying L’Hôspital’s rule. From here on out, we shall only concern ourselves
with the behaviour of 𝑔 within (−𝜋/2, 𝜋/2).

Suppose that the 𝑛th derivative of the function 𝑔 has the form (3.8), for a given
polynomial 𝑃𝑛. We will show that 𝑔(𝑛+1) can be written in the same form, and thus
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obtain a recurrence formula for 𝑃𝑛+1. Indeed,

𝑔(𝑛+1) (𝑥) = 𝑘 sec𝑘𝑥 tan 𝑥 𝑃𝑛 (tan 𝑥) exp
(
− tan2𝑥

2

)
+

+ sec𝑘+2𝑥 𝑃′𝑛 (tan 𝑥) exp
(
− tan2𝑥

2

)
−

− sec𝑘+2𝑥 tan 𝑥𝑃𝑛 (tan 𝑥) exp
(
− tan2𝑥

2

)
.

Then, using the trigonometric identity sec2𝑥 = tan2𝑥 + 1, we find

𝑔(𝑛+1) (𝑥) = sec𝑘𝑥
[(
𝑘 − 1 − tan2𝑥

)
tan 𝑥 𝑃𝑛 (tan 𝑥) +

+
(
1 + tan2𝑥

)
𝑃′𝑛 (tan 𝑥)

]
exp

(
− tan2𝑥

2

)
,

so that the intended result is proven, and the recurrence relation we sought turns
out to be

𝑃𝑛+1(𝑡) =
(
𝑡2 + 1

)
𝑃′𝑛 (𝑡) +

[
(𝑘 − 1)𝑡 − 𝑡3

]
𝑃𝑛 (𝑡) .

We note the following important property of the formula above: 𝑃𝑛+1 has the
reverse parity of 𝑃𝑛. This is evident for the second term, where 𝑃𝑛 is multiplied
by an odd factor. For the first term, it follows from the fact that 𝑃′𝑛 is odd if 𝑃𝑛 is
even and even if 𝑃𝑛 is odd, and the multiplication by the even factor

(
𝑡2 + 1

)
does

not affect the parity.
Next, we will show how to express the 𝐿2-norms of 𝑔 and its derivatives in

terms of the gamma function, whose definition we recall:

Γ(𝑠) =
∞∫

0

𝑡𝑠−1e−𝑡 d𝑡 .

For simplicity, we shall assume that 𝑃0 is either even or odd, so that the squares
𝑃2
𝑛 will be even for all 𝑛. Then, the squares of 𝑔 and its derivatives will be even

functions, and we will be able to replace the integration interval (−𝜋/2, 𝜋/2) with
(0, 𝜋/2).
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𝑔(𝑛)


2
=

𝜋/2∫
−𝜋/2

sec2𝑘𝑥 𝑃2
𝑛 (tan 𝑥) exp

(
− tan2𝑥

)
d𝑥

= 2
𝜋/2∫

0

tan 𝑥 sec2𝑥

tan 𝑥
sec2(𝑘−1) 𝑥 𝑃2

𝑛 (tan 𝑥) exp
(
− tan2𝑥

)
d𝑥

= 2
𝜋/2∫

0

tan 𝑥 sec2𝑥

tan 𝑥
(tan2𝑥 + 1)𝑘−1𝑃2

𝑛 (tan 𝑥) exp
(
− tan2𝑥

)
d𝑥

Note how the factor (tan2𝑥 + 1)𝑘−1𝑃2
𝑛 (tan 𝑥) is still an even polynomial in tan 𝑥.

Now, we make the substitution 𝑡 = tan2𝑥 (so that d𝑡
d𝑥 = 2 tan 𝑥 sec2𝑥), to obtain




𝑔(𝑛)


2
=

∞∫
0

𝑡−1/2(𝑡 + 1)𝑘−1𝑃2
𝑛

(
𝑡1/2

)
e−𝑡 d𝑡 .

This result can be immediately connected to the gamma function. For example, if
the polynomial (𝑡 + 1)𝑘−1𝑃2

𝑛

(
𝑡1/2

)
is given by

∑𝑁
𝑖=0 𝑎𝑖𝑡

𝑖, then




𝑔(𝑛)


2
=

𝑁∑︁
𝑖=0

𝑎𝑖

∞∫
0

𝑡𝑖−1/2e−𝑡 d𝑡 =
𝑁∑︁
𝑖=0

𝑎𝑖Γ

(
𝑖 + 1

2

)
.

Note how the gamma function is always evaluated at positive values, so that all the
terms are well-defined. In fact, there is an analytic formula for the value of Γ at
positive half-integer values of the argument:

Γ

(
𝑖 + 1

2

)
=

(2𝑖)!
4𝑖𝑖!

√
𝜋 (∀𝑖 ∈ N) .

It will be convenient to translate and rescale 𝑔 to obtain a function supported
in [0, 1]. Let ℎ(𝑥) = 𝑔

(
𝜋(𝑥 − 1/2)

)
. Then, ℎ(𝑛) (𝑥) = 𝜋𝑛𝑔(𝑛)

(
𝜋(𝑥 − 1/2)

)
, and




ℎ(𝑛)


2
= 𝜋2𝑛

+∞∫
−∞

𝑔(𝑛)
(
𝜋(𝑥 − 1/2)

)2 d𝑥 = 𝜋2𝑛−1



𝑔(𝑛)


2

.
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To work with the criterion for focal points, we would like a function which
“stepped down” smoothly from 1 to 0. For convenience, we will instead define a
fuction 𝜓 which “steps up” smoothly from 0 to 1, and later reflect it as necessary.
This is achieved by letting

𝜓(𝑢) =
∫ 𝑢

0 ℎ(𝑥) d𝑥∫ 1
0 ℎ(𝑥) d𝑥

.

Then, for every 𝑛 ≥ 1, 𝜓 (𝑛) = 𝜇
1
2 ℎ(𝑛−1) , where

𝜇 =
1(∫ 1

0 ℎ(𝑥) d𝑥
)2 .

The 𝐿2-norms of all derivatives of 𝜓 can then be expressed in terms of the known
data for 𝑔: 


𝜓 (𝑛)




2
= 𝜇𝜋2𝑛−3




𝑔(𝑛−1)



 ;

∥𝜓∥2 itself is the only one which, in general, needs to be determined numerically.
Finally, we define three auxiliary constants 𝐴, 𝐵 and 𝐶 related to the function

𝜓 which will greatly simplify certain expressions in what follows:

𝐴 = ∥𝜓∥2

𝐵 = ∥𝜓′∥2

𝐶 =




𝜓 (𝑁)



2
.

3.3.3 Strategy I: The SEC initially holds

The first method used to make the functions appearing in the energy condition
compatible with the ones appearing in the criterion for focal points is to impose that
the strong energy condition holds along 𝛾 for a certain interval after it departs from
the Cauchy surface 𝑆. More precisely, we assume the existence of two constants
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𝑏0 ∈ (0, 𝑏) and 𝜌0 ≥ 0 such that

𝜌(𝑢) ≥ 𝜌0 (∀𝑢 ∈ [0, 𝑏0]) .

Let

𝑓 (𝑢) =


1 , for 𝑢 ∈ [0, 𝑏0]

𝜓

(
𝑏 − 𝑢
𝑏 − 𝑏0

)
, for 𝑢 ∈ (𝑏0, 𝑏]

,

where 𝜓 is the test function previously defined. We also define an auxiliary
function

𝜑(𝑢) =


𝜓

(
𝑢

𝑏0

)
, for 𝑢 ∈ [0, 𝑏0)

1 , for 𝑢 ∈ [𝑏0, 𝑏]
;

see Figure 3.1. Then, unlike 𝑓 and 𝜑, the product 𝜑 𝑓 obeys the required boundary
conditions at 0 and 𝑏. This means that we can apply the energy condition to 𝜑 𝑓 .
We will rewrite 𝑓 2 in terms of 𝜑 𝑓 using

𝑓 2 = (𝜑 𝑓 )2 + (1 − 𝜑2) 𝑓 2 = (𝜑 𝑓 )2 + (1 − 𝜑2) ,

where the first equation can be written for any pair of functions and the second
comes from the fact that 𝑓 ≡ 1 on the support of (1 − 𝜑)2, whereas 𝑓 differs from
1 only at points where (1 − 𝜑2) vanishes.

Taking all of these observations into account,

𝑏∫
0

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 =

𝑏∫
0

𝜌(𝑢)
[
(𝜑 𝑓 )2(𝑢) +

(
1 − 𝜑2(𝑢)

) ]
d𝑢

≥ −𝑄0(𝛾)∥𝜑 𝑓 ∥2 −𝑄𝑁 (𝛾)



(𝜑 𝑓 ) (𝑁)


2

+ 𝜌0

𝑏0∫
0

(
1 − 𝜑2(𝑢)

)
d𝑢 .

Now, because 𝜑 𝑓 = 𝜑 on [0, 𝑏0] and 𝜑 𝑓 = 𝑓 on [𝑏0, 𝑏], the squared norms in the
expression above split, and can be rewritten in terms of the data for our family of
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Figure 3.1: Example graphs showing the behaviour of the functions 𝑓 (𝑢) and
𝜑(𝑢).

test functions:

𝑏∫
0

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ 𝜌0𝑏0(1 − 𝐴) −𝑄0(𝛾)𝑏𝐴 − 𝑄𝑁 (𝛾)𝐶
𝑏2𝑁−1

0
− 𝑄𝑁 (𝛾)𝐶

(𝑏 − 𝑏0)2𝑁−1

The expression above gives us a bound on the second term of 𝐽 [ 𝑓 ]. The first
one is easy to compute using that 𝑓 ′ ≡ 0 on [0, 𝑏0] and applying the data on our
test functions on the remainder of the interval:

𝑏∫
0

(𝑚 − 1) 𝑓 ′(𝑢)2 d𝑢 = (𝑚 − 1)
𝑏∫

𝑏0

𝜓′
(
𝑏 − 𝑢
𝑏 − 𝑏0

)2
d𝑢 =

(𝑚 − 1)𝐵
𝑏 − 𝑏0

.

Finally, summing the two contributions, we find a bound for 𝐽 [ 𝑓 ]:

𝐽 [ 𝑓 ] ≤ −𝜌0𝑏0(1 − 𝐴) +𝑄0(𝛾)𝑏𝐴 + (𝑚 − 1)𝐵
𝑏 − 𝑏0

+ 𝑄𝑁 (𝛾)𝐶
𝑏2𝑁−1

0
+ 𝑄𝑁 (𝛾)𝐶
(𝑏 − 𝑏0)2𝑁−1 .

If the right hand side of the above equation is less than or equal to 𝐾 , then
Proposition 29 guarantees the existence of a focal point of 𝑆 along 𝛾. Along with
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Proposition 36, this allows us to state the following singularity theorem:

Theorem 38. Let (𝑀, 𝑔) be a globally hyperbolic spacetime of dimension 𝑚 > 2
and let 𝑆 be a compact smooth spacelike Cauchy surface for 𝑀 . Suppose that, for
some 𝑏 > 0, there exist an integer 𝑁 ≥ 1 and constants 𝑄0 and 𝑄𝑁 such that:

1. For each unit speed timelike geodesic 𝛾 of proper length 𝑏 issuing ortho-
gonally from 𝑆,∫

𝛾

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ −𝑄0(𝛾)∥ 𝑓 ∥2 −𝑄𝑁 (𝛾)



 𝑓 (𝑁)


2

,

where 0 ≤ 𝑄0(𝛾) ≤ 𝑄0, 0 ≤ 𝑄𝑁 (𝛾) ≤ 𝑄𝑁 , with ∥·∥ denoting the usual
𝐿2-norm and 𝜌(𝑢) = Ric

(
𝛾′(𝑢), 𝛾′(𝑢)

)
.

2. There exist 𝜌0 ≥ 0 and 𝑏0 in (0, 𝑏) such that, for each geodesic 𝛾 as above
and each 𝑢 ∈ [0, 𝑏0], 𝜌(𝑢) ≥ 𝜌0 (i.e., the strong energy condition holds on
[0, 𝑏0] ).

3. 𝐾 , the convergence of 𝑆, satisfies

𝐾 ≥ min
{
𝑚 − 1
𝑏0

, 𝜈

}
,

where

𝜈 = −𝜌0𝑏0(1 − 𝐴) +𝑄0𝑏𝐴 + (𝑚 − 1)𝐵
𝑏 − 𝑏0

+ 𝑄𝑁𝐶

𝑏2𝑁−1
0

+ 𝑄𝑁𝐶

(𝑏 − 𝑏0)2𝑁−1 .

Then, no future-directed timelike curve issuing from 𝑆 has proper length greater
than 𝑏, and 𝑀 is future timelike geodesically incomplete.

If we instead apply our criterion to look for lightlike focal points of a compact,
smooth, (𝑚−2)-dimensional spacelike submanifold of 𝑀 , the reasoning proceeds
exactly as above, except for the substitution of factors of 𝑚 − 1 by 𝑚 − 2 and of
the strong energy condition by the null energy condition. After including suitable
causality hypotheses and applying Proposition 37, the following generalisation of
Penrose’s theorem is derived:
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Theorem 39. Let𝑀 be a globally hyperbolic spacetime with a noncompact Cauchy
surface and let 𝑇 be a smooth (𝑚 − 2)-dimensional spacelike submanifold of 𝑀
which is achronal and future-converging. Suppose that, for some 𝑏 > 0, there
exist an integer 𝑁 ≥ 1 and constants 𝑄0 and 𝑄𝑁 such that:

1. For every lightlike geodesic 𝛾 issuing orthogonally from𝑇 and with𝑇-length
𝑏, ∫

𝛾

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ −𝑄0(𝛾)∥ 𝑓 ∥2 −𝑄𝑁 (𝛾)



 𝑓 (𝑁)


2

,

where 0 ≤ 𝑄0(𝛾) ≤ 𝑄0 and 0 ≤ 𝑄𝑁 (𝛾) ≤ 𝑄𝑁 .

2. There exist 𝜌0 ≥ 0 and 𝑏0 ∈ (0, 𝑏) such that 𝜌(𝑢) ≥ 𝜌0 for each geodesic
𝛾 as above and every 𝑢 ∈ [0, 𝑏0] (i.e., the null energy condition holds on
[0, 𝑏0] ).

3. 𝐾 , the convergence of 𝑇 , satisfies

𝐾 ≥ min
{
𝑚 − 2
𝑏0

, 𝜈

}
,

with

𝜈 = −𝜌0𝑏0(1 − 𝐴) +𝑄0𝑏𝐴 + (𝑚 − 2)𝐵
𝑏 − 𝑏0

+ 𝑄𝑁𝐶

𝑏2𝑁−1
0

+ 𝑄𝑁𝐶

(𝑏 − 𝑏0)2𝑁−1 .

Then, there exists an inextendible lightlike geodesic issuing orthogonally from 𝑇

with 𝑇-length less than 𝑏, and 𝑀 is future lightlike geodesically incomplete.

3.3.4 Strategy II: “Quantum Interest”

Take a unit speed timelike geodesic 𝛾 issuing orthogonally from 𝑆 and extend
it towards the past, obtaining, say, 𝛾 : [−𝑏0, 𝑏] → 𝑀 , with 𝑏0 > 0 and 𝛾(0) ∈ 𝑆.
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Figure 3.2: Example plots of 𝑓 and 𝑓 . Note how the two coincide on the interval
[0, 𝑏].

Then, define

𝑓 (𝑢) =


𝜓

(
𝑏′ − 𝑢
𝑏′

)
, for 𝑢 ∈ [0, 𝑏′)

0 , for 𝑢 ∈ [𝑏′, 𝑏]
,

for 𝑏′ ∈ (0, 𝑏). Let also

𝑓 (𝑢) =


0 , for 𝑢 ∈ [−𝑏0,−𝑏′0]

𝜓

(
𝑢 + 𝑏′0
𝑏′0

)
, for 𝑢 ∈ (−𝑏′0, 0)

𝑓 (𝑢) , for 𝑢 ∈ [0, 𝑏]

,

where 𝑏′0 ∈ (0, 𝑏0). Figure 3.2 gives a graphical representation of the behaviour
of 𝑓 anf 𝑓 . Later on, we will use the free parameters 𝑏′ and 𝑏′0 to optimise our
bounds.
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Now, we write the second term in 𝐽 [ 𝑓 ] as

𝑏∫
0

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 =

𝑏∫
−𝑏0

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 −
0∫

−𝑏0

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 .

The energy condition can be applied to 𝑓 . To deal with the second term, we take
a constant 𝜌0 such that 𝜌(𝑢) ≤ 𝜌0 for all 𝑢 ∈ [−𝑏0, 0]. Then,

𝑏∫
0

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ −𝑄0(𝛾)


 𝑓 

2 −𝑄𝑁 (𝛾)




 𝑓 (𝑁)


2
− 𝜌0

0∫
−𝑏0

𝑓 2(𝑢) d𝑢 .

The norms and the integral on the right hand side can all be written in terms of the
data for our test functions; we find

𝑏∫
0

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ −𝑄0(𝛾)𝑏′𝐴 −𝑄0(𝛾)𝑏′0𝐴 − 𝑄𝑁 (𝛾)𝐶
𝑏′2𝑁−1 − 𝑄𝑁 (𝛾)𝐶

𝑏′0
2𝑁−1 − 𝜌0𝑏

′
0𝐴 .

Inserting into the formula for 𝐽 [ 𝑓 ] and using the value calculated for the term
involving 𝑓 ′ in the previous subsection, we obtain

𝐽 [ 𝑓 ] ≤ (𝑚 − 1)𝐵
𝑏′

+𝑄0(𝛾)𝑏′𝐴 +𝑄0(𝛾)𝑏′0𝐴 + 𝑄𝑁 (𝛾)𝐶
𝑏′2𝑁−1 + 𝑄𝑁 (𝛾)𝐶

𝑏′0
2𝑁−1 + 𝜌0𝑏

′
0𝐴 .

Exploiting the freedom of the parameters 𝑏′ and 𝑏′0, we can guarantee the existence
of a focal point of 𝑆 within [0, 𝑏] if

𝐾 ≥ 𝐿 + 𝐿0 ,

where

𝐿 = min
{
𝑄0(𝛾)𝑏′𝐴 + (𝑚 − 1)𝐵

𝑏′
+ 𝑄𝑁 (𝛾)𝐶
𝑏′2𝑁−1 : 𝑏′ ∈ (0, 𝑏)

}
(3.9)

𝐿0 = min

{
[𝑄0(𝛾) + 𝜌0]𝑏′0𝐴 + 𝑄𝑁 (𝛾)𝐶

𝑏′0
2𝑁−1 : 𝑏′0 ∈ (0, 𝑏0)

}
. (3.10)
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Note how all terms depending on 𝑏′ are grouped within 𝐿 and those depending on
𝑏′0 are in 𝐿0. This leads to the following Hawking-type singularity theorem:

Theorem 40. Let (𝑀, 𝑔) be a smooth globally hyperbolic Lorentzian manifold of
dimension 𝑚 > 2 and 𝑆 be a smooth, compact spacelike Cauchy surface for 𝑀 .
Suppose that, for some pair of positive numbers 𝑏 and 𝑏0, there exist an integer
𝑁 ≥ 1 and constants 𝑄0, 𝑄𝑁 ≥ 0 such that:

1. Every unit speed future-directed timelike geodesic of proper length 𝑏 issuing
orthogonally from 𝑆 can be extended to a geodesic of the form 𝛾 : [−𝑏0, 𝑏] →
𝑀 , along which∫

𝛾

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ −𝑄0(𝛾)∥ 𝑓 ∥2 −𝑄𝑁 (𝛾)



 𝑓 (𝑁)


2

holds for each test function 𝑓 ∈ C∞
0 ( [−𝑏0, 𝑏]), where 0 ≤ 𝑄0(𝛾) ≤ 𝑄0 and

0 ≤ 𝑄𝑁 (𝛾) ≤ 𝑄𝑁 .

2. There exists a finite upper bound 𝜌0 such that 𝜌(𝑢) ≤ 𝜌0 for every geodesic
𝛾 as above and every 𝑢 ∈ [−𝑏0, 0].

3. 𝐾 , the convergence of 𝑆, verifies

𝐾 ≥ 𝐿 + 𝐿0

at every point of 𝑆, with 𝐿 and 𝐿0 given by (3.9) and (3.10).

Then, no future-directed curve issuing from 𝑆 has proper length greater than 𝑏
and 𝑀 is future timelike geodesically incomplete.

Note how decreasing 𝜌0 makes 𝐿0 also decrease, and hence, relaxes the re-
quirement on the initial convergence 𝐾 . This is the reason why we refer to this
strategy as “quantum interest”: violations of the SEC before 𝑆 make it so that the
energy tends to be positive after 𝑆, and this makes the focussing of geodesics more
intense and the appearance of singularities more likely.

Again, applying the same reasoning to the setup of the Penrose theorem yields
the following generalisation:
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Theorem 41. Let 𝑀 be a globally hyperbolic spacetime with noncompact Cauchy
surface and 𝑇 be a smooth (𝑚−2)-dimensional spacelike submanifold of 𝑀 which
is achronal and future-converging. Suppose that for some pair of positive numbers
𝑏, 𝑏0 > 0 there exist an integer 𝑁 ≥ 1 and positive constants 𝑄0 and 𝑄𝑁 such
that:

1. Every future directed lightlike geodesic 𝛾 issuing orthogonally from 𝑇 and
with 𝑇-length 𝑏 can be extended to [−𝑏0, 𝑏]; besides, along the extended
curve, ∫

𝛾

𝜌(𝑢) 𝑓 2(𝑢) d𝑢 ≥ −𝑄0(𝛾)∥ 𝑓 ∥2 −𝑄𝑁 (𝛾)



 𝑓 (𝑁)


2

,

for every test function 𝑓 ∈ C∞
0 ( [−𝑏0, 𝑏]), where 0 ≤ 𝑄0(𝛾) ≤ 𝑄0 and

0 ≤ 𝑄𝑁 (𝛾) ≤ 𝑄𝑁 .

2. There exists a finite upper bound 𝜌0 such that, along each extended geodesic
as above, 𝜌(𝑢) ≤ 𝜌0 for each 𝑢 ∈ [−𝑏0, 0] (i.e., on the portion of 𝛾 that lies
to the past of 𝑇).

3. At each point of 𝑇 , the convergence 𝐾 verifies 𝐾 ≥ 𝐿 + 𝐿0, where

𝐿 = min
{
𝑄0(𝛾)𝑏′𝐴 + (𝑚 − 2)𝐵

𝑏′
+ 𝑄𝑁 (𝛾)𝐶
𝑏′2𝑁−1 : 𝑏′ ∈ (0, 𝑏)

}

𝐿0 = min

{
[𝑄0(𝛾) + 𝜌0]𝑏′0𝐴 + 𝑄𝑁 (𝛾)𝐶

𝑏′0
2𝑁−1 : 𝑏′0 ∈ (0, 𝑏0)

}
.

Then, there exists an inextendible future directed lightlike geodesic issuing ortho-
gonally from 𝑇 with 𝑇-length less than 𝑏, and 𝑀 is future lightlike geodesically
incomplete.
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3.4 Final remarks and conclusion

With these results in hand, the most immediate application is to try and de-
rive singularity theorems for fields which are known to respect a certain energy
inequality. For example, the final sections of both [30] and [31] are concerned
with the Klein-Gordon field, as well as a more recent paper by Fewster, Kontou
and Brown [36], which does the same on a curved background. The question of
whether these theorems are useful for other types of classical and quantum fields
is an interesting one for future work in the area.

One other line of inquiry which can be pursued is that of optimising the choice
of the family of test functions one uses. Note that both the choice made here and
the one in [31] are perfectly arbitrary, motivated by operational convenience. It is
likely that the optimal choice is dependent on the particular setting, and, while the
resulting family might be much more technically demanding to work with, it might
lead to stronger singularity theorems (i.e., requiring less initial convergence).

Finally, we reiterate that the results discussed here are not proof that singularity
theorems hold in quantum theory. As was already mentioned at the start, one can
only expect results of this kind if the gravitational field itself is treated at the
quantum level. These theorems are, however, the best indication of the answer that
can be obtained to date, considering their potential application to the semiclassical
theory.



Appendix A

Some mathematical prerequisites

In this appendix, we have attempted to collect a number of definitions and res-
ults from Semi-Riemannian Geometry which are not standard in general relativity
textbooks but are essential to the understanding of this text. These prerequisites
are grouped under two sections, one on Jacobi fields and one on Semi-Riemannian
submanifolds. Our treatment leaves out some geometrical concepts which, despite
being used throughout the text and not being standard topics in the Physics liter-
ature, are only required in proofs, and not essential for the understanding of the
results themselves. For these more advanced topics, such as the exponential map,
we refer the reader to the specialised mathematical literature (e.g., [32, 34]).

A.1 Jacobi fields

Definition 42. Let 𝑌 be a vector field on a geodesic 𝛾. 𝑌 is said to be a Jacobi
Field on 𝛾 if it satisfies the Jacobi Equation:

𝑌 ′′ + 𝑅(𝑌, 𝛾′)𝛾′ = 0 .

Theorem 43. Let 𝛾 : [𝑎, 𝑏] → 𝑀 be a geodesic with 𝛾(𝑎) = 𝑝, and let 𝑣, 𝑤 ∈
𝑇𝑝𝑀 . Then, there exists a unique Jacobi field 𝑌 on 𝛾 such that 𝑌 (𝑎) = 𝑣 and
𝑌 ′(𝑎) = 𝑤.

Proof. Take a parallel frame 𝐸1, . . . , 𝐸𝑚 on 𝛾 and define component functions for

74
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𝑌 via 𝑌 = 𝑌 𝑖𝐸𝑖 and components for 𝑣 and 𝑤 via 𝑣 = 𝑣𝑖𝐸𝑖 (𝑎) and 𝑤 = 𝑤𝑖𝐸𝑖 (𝑎).
Because 𝛾 is a geodesic, the components of 𝛾′ on this parallel frame are all
constants: 𝛾′ = 𝑐𝑖𝐸𝑖. Then, the Jacobi equation for 𝑌 can be rewritten as

0 = 𝑌 ′′ + 𝑅(𝑌, 𝛾′)𝛾′ =
[ (
𝑌 𝑖

)′′ + 𝑅 𝑗 𝑘𝑙 𝑖𝑌 𝑗𝑐𝑘𝑐𝑙 ]𝐸𝑖 ,
which is equivalent to(

𝑌 𝑖
)′′ + 𝑅 𝑗 𝑘𝑙 𝑖𝑌 𝑗𝑐𝑘𝑐𝑙 = 0 (1 ≤ 𝑖 ≤ 𝑚) .

This system is also subject to the initial conditions

𝑌 𝑖 (𝑎) = 𝑣𝑖 ,
(
𝑌 𝑖

)′(𝑎) = 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑚) .

By standard results in ordinary linear differential equations, because the compon-
ents of the curvature tensor are smooth, this system has a uniquely defined, smooth
solution for 𝑌 on the domain of 𝛾. □

The Jacobi equation is linear, and hence the set of Jacobi fields on 𝛾 is a
real vector space. Since, by the Lemma above, each of these fields is uniquely
determined by the initial conditions for 𝑌 and 𝑌 ′ at a point along 𝛾, the dimension
of this vector space is 2𝑚.

We say that a vector field𝑉 along a curve 𝛾 : [𝑎, 𝑏] → 𝑀 is tangent if𝑉 = 𝑓 𝛾′

for some smooth function 𝑓 on [𝑎, 𝑏]. 𝑉 is perpendicular to 𝛾 if ⟨𝑉 , 𝛾′⟩ = 0 at
each point.

If 𝛾′(𝑡) is not lightlike, 𝑉 (𝑡) has a unique decomposition of the form 𝑉⊥(𝑡) +
𝑉⊤(𝑡), where 𝑉⊥(𝑡) is orthogonal to 𝛾′(𝑡) and 𝑉⊤(𝑡) is collinear with 𝛾′(𝑡).
When 𝛾′(𝑡) is lightlike, the tangential direction is itself orthogonal, and there
is no canonical way of splitting 𝑉 (𝑡) into perpendicular and non-perpendicular
components.

If 𝛾 is a geodesic, 𝑉 ⊥ 𝛾 implies 𝑉 ′ ⊥ 𝛾, since

⟨𝑉 ′ , 𝛾′⟩ = ⟨𝑉 , 𝛾′⟩′ − ⟨𝑉 , 𝛾′′⟩ = 0 .



APPENDIX A. SOME MATHEMATICAL PREREQUISITES 76

If 𝑉 = 𝑓 𝛾′, then

𝑉 ′ = 𝑓 ′𝛾′ + 𝑓 𝛾′′ = 𝑓 ′𝛾′ ,

implying that 𝑉 ′ is also a tangent vector field. Therefore, along non-lightlike
geodesics, 𝑉 ′ (and also all higher order covariant derivatives of 𝑉) splits into
tangential and perpendicular components and

(𝑉 ′)⊤ =
(
𝑉⊤)′ and (𝑉 ′)⊥ =

(
𝑉⊥)′

.

Proposition 44. Let 𝑌 be a vector field on a geodesic 𝛾.

1. If 𝑌 is tangent, the following are equivalent:

(i) 𝑌 is a Jacobi field.

(ii) 𝑌 ′′ = 0.

(iii) 𝑌 (𝑡) = (𝛼𝑡 + 𝛽)𝛾′(𝑡), with 𝛼, 𝛽 ∈ R.

2. If 𝑌 is a Jacobi field, the following are equivalent:

(i) 𝑌 is perpendicular to 𝛾.

(ii) There exist distinct points 𝑎 and 𝑏 in the domain of 𝛾 such that 𝑌 (𝑎) ⊥
𝛾′(𝑎) and 𝑌 (𝑏) ⊥ 𝛾′(𝑏).

(iii) There exists 𝑎 in the domain of 𝛾 such that 𝑌 (𝑎) and 𝑌 ′(𝑎) are ortho-
gonal to 𝛾′(𝑎).

3. If 𝛾 is not lightlike, the following are equivalent:

(i) 𝑌 is a Jacobi field.

(ii) 𝑌⊤ and 𝑌⊥ are Jacobi fields.

Proof.
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1. The antisymmetry of the curvature operator implies that (ii) is just the form
the Jacobi equation takes when 𝑌 is tangent, so it is immediately equivalent
to (i). Besides, if𝑌 = 𝑓 𝛾′,𝑌 ′′ = 0 if and only if 𝑓 ′′ = 0, since 𝛾 is a geodesic.
Thus, (ii) is also equivalent to (iii).

2. If we calculate ⟨𝑌 , 𝛾′⟩′′ and apply the Jacobi equation and the fact that 𝛾 is
a geodesic, we get

⟨𝑌 , 𝛾′⟩′′ = −⟨𝑅(𝑌, 𝛾′)𝛾′ , 𝛾′⟩ = 0 ,

by elementary properties of the curvature. Therefore, ⟨𝑌 , 𝛾′⟩ is an affine
function 𝛼𝑡 + 𝛽, and its derivative ⟨𝑌 ′ , 𝛾′⟩ is the constant 𝛼; it results that
all three assertions in the statement are equivalent to 𝛼 = 𝛽 = 0.

3. Decomposing 𝑌 into tangential and orthogonal components,

𝑌 ′′ + 𝑅(𝑌, 𝛾′)𝛾′ =
(
𝑌⊤)′′ + (

𝑌⊥)′′ + 𝑅(𝑌⊥, 𝛾′)𝛾′ (A.1)

(the term 𝑅(𝑌⊤, 𝛾′)𝛾′ vanishes by the antisymmetry of the curvature). Also
by properties of the curvature,〈

𝑅(𝑌⊥, 𝛾′)𝛾′ , 𝛾′
〉
=

〈
𝑅(𝛾′, 𝛾′)𝑌⊥ , 𝛾′

〉
= 0 .

Therefore, the first term in the right hand side of (A.1) is tangential to 𝛾,
whereas the final two are orthogonal; the sum can only be zero if these
components both vanish, and so

𝑌 ′′ + 𝑅(𝑌, 𝛾′)𝛾′ = 0 ⇐⇒
{ (
𝑌⊤)′′

= 0(
𝑌⊥)′′ + 𝑅(𝑌⊥, 𝛾′)𝛾′ = 0

. □

Definition 45. Given a nonzero vector 𝑣 ∈ 𝑇𝑝𝑀 , the tidal force operator 𝐹𝑣 :
𝑣⊥ → 𝑣⊥ is defined as

𝐹𝑣 (𝑦) = −𝑅(𝑦, 𝑣)𝑣 .

Notice that, in terms of the tidal force, the Jacobi equation for a vector field 𝑌
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along 𝛾 can be written as 𝑌 ′′ = 𝐹𝛾′ (𝑌 ).

Proposition 46. 𝐹𝑣 is a self-adjoint linear operator on 𝑣⊥ and tr 𝐹𝑣 = −Ric(𝑣, 𝑣).

Proof. Self-adjointness follows from symmetries of the curvature:

⟨𝐹𝑣 (𝑥) , 𝑦⟩ = ⟨−𝑅(𝑥, 𝑣)𝑣 , 𝑦⟩ = ⟨𝑅(𝑣, 𝑥)𝑣 , 𝑦⟩ =
= ⟨𝑅(𝑣, 𝑦)𝑣 , 𝑥⟩ = ⟨−𝑅(𝑦, 𝑣)𝑣 , 𝑥⟩ = ⟨𝐹𝑣 (𝑦) , 𝑥⟩ .

If 𝑣 is not lightlike, let {𝑒1, . . . , 𝑒𝑚−1} be an orthonormal basis for 𝑣⊥. Then,

tr 𝐹𝑣 =
𝑚−1∑︁
𝑖=1

𝜎𝑖 ⟨−𝑅(𝑒𝑖, 𝑣)𝑣 , 𝑒𝑖⟩ = −Ric(𝑣, 𝑣) ,

where 𝜎𝑖 = ⟨𝑒𝑖 , 𝑒𝑖⟩ = ±1. If 𝑣 is lightlike, its direction is itself contained in 𝑣⊥,
and thus the metric is degenerate in this subspace. Therefore, the basis has to be
picked more carefully for the calculation of the trace. Take a lightlike vector 𝑤
such that ⟨𝑣 , 𝑤⟩ = −1 and let

𝑒1 =
1
√

2
(𝑣 + 𝑤) and 𝑒2 =

1
√

2
(𝑣 − 𝑤) ;

then, 𝑒1 is unit timelike, 𝑒2 unit spacelike, and they are mutually orthogonal. We
can then complete to an orthonormal basis {𝑒1, . . . , 𝑒𝑚} of 𝑇𝑝𝑀 , and calculate

Ric(𝑣, 𝑣) =
𝑚∑︁
𝑖=1

𝜎𝑖 ⟨𝑅(𝑒𝑖, 𝑣)𝑣 , 𝑒𝑖⟩ .

Replacing 𝑒1 and 𝑒2 by their expressions in terms of 𝑣 and 𝑤, the first two terms
in the sum become

𝜎1⟨𝑅(𝑒1, 𝑣)𝑣 , 𝑒1⟩ = −1
2
⟨𝑅(𝑤, 𝑣)𝑣 , 𝑤⟩

and

𝜎2⟨𝑅(𝑒2, 𝑣)𝑣 , 𝑒2⟩ =
1
2
⟨𝑅(𝑤, 𝑣)𝑣 , 𝑤⟩ ;

three other terms vanish in each of these equations by virtue of containing three or
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more factors of 𝑣. The two expressions above cancel out, and we conclude

Ric(𝑣, 𝑣) =
𝑚∑︁
𝑖=3

𝜎𝑖 ⟨𝑅(𝑒𝑖, 𝑣)𝑣 , 𝑒𝑖⟩

= −
𝑚∑︁
𝑖=3

𝜎𝑖 ⟨𝐹𝑣 (𝑒𝑖) , 𝑒𝑖⟩ − ⟨𝐹𝑣 (𝑣) , 𝑣⟩

= − tr 𝐹𝑣 ,

where, in the penultimate line, we are free to add the last term, since it is zero. □

A.2 Semi-Riemannian submanifolds

A.2.1 Preliminary concepts

Definition 47. A manifold 𝑁 is a submanifold of 𝑀 if the following conditions
hold:

1. 𝑁 is a topological subspace of 𝑀; and

2. the inclusion map 𝑖 : 𝑁 → 𝑀 is smooth and its differential is injective at
every point of 𝑁 .

If𝑀 and𝑁 are semi-Riemannian manifolds, 𝑁 is said to be a semi-Riemannian
submanifold of 𝑀 if its metric coincides with the restriction of that of 𝑀 .

Note that, in the definition of a semi-Riemannian submanifold, requiring that 𝑁
be a semi-Riemannian manifold beforehand is meaningful. If one simply takes 𝑁
as a submanifold of 𝑀 and attempts to endow it with a metric tensor by restricting
that of 𝑀 , the result may be a degenerate metric, which does not make 𝑁 a semi-
Riemannian manifold. A trivial illustration of this fact is a light ray in Minkowski
space.

The following proposition will be used in the proofs of some of the results that
follow:

Proposition 48. Let𝑁 be a submanifold of𝑀 . If a vector field 𝑋 ∈ 𝔛(𝑀) is tangent
to 𝑁 (i.e., if 𝑋 (𝑝) ∈ 𝑇𝑝𝑁 for each 𝑝 ∈ 𝑁), then 𝑋 |𝑁 ∈ 𝔛(𝑁). Furthermore, if 𝑌



APPENDIX A. SOME MATHEMATICAL PREREQUISITES 80

is another vector field tangent to 𝑁 ,

[𝑋 , 𝑌 ] |𝑁 = [ 𝑋 |𝑁 , 𝑌 |𝑁 ] .

If 𝑁 is a submanifold of 𝑀 , vector fields on the inclusion map 𝑖 : 𝑁 → 𝑀 are
called 𝑀-vector fields on 𝑁 and denoted 𝔛(𝑁). In particular, the restriction of
any vector field on 𝑀 to 𝑁 is in 𝔛(𝑁).

If 𝑁 is now a semi-Riemannian submanifold of𝑀 , each𝑇𝑝𝑁 is a nondegenerate
subspace of 𝑇𝑝𝑀 , and hence

𝑇𝑝𝑀 = 𝑇𝑝𝑁 ⊕
(
𝑇𝑝𝑁

)⊥
,

where
(
𝑇𝑝𝑁

)⊥ is also nondegenerate. If 𝑛 and 𝑚 are the dimensions of 𝑁 and 𝑀 ,
dim

(
𝑇𝑝𝑁

)⊥
= 𝑚 − 𝑛 is called the codimension of 𝑁 in 𝑀 . The semi-Riemannian

index of
(
𝑇𝑝𝑁

)⊥ is called the coindex of 𝑁 and

ind𝑀 = ind 𝑁 + coind 𝑁 .

The elements of
(
𝑇𝑝𝑁

)⊥ are said to be normal to 𝑁 , whereas those in 𝑇𝑝𝑁
are tangent. Besides, for every 𝑝 ∈ 𝑁 and every 𝑣 ∈ 𝑇𝑝𝑀 , there exists a unique
decomposition

𝑣 = 𝑣⊤ + 𝑣⊥ ,

where 𝑣⊤ ∈ 𝑇𝑝𝑁 and 𝑣⊥ ∈
(
𝑇𝑝𝑁

)⊥. If applied pointwise to a vector field 𝑋 ∈
𝔛(𝑁), this decomposition yields two new vector fields: one everywhere tangent to
𝑁 , denoted 𝑋⊤, and one everywhere normal to 𝑁 , denoted 𝑋⊥. The set of normal
vector fields to 𝑁 is denoted 𝔛⊥(𝑁). The tangent and normal vector fields to 𝑁
are both submodules of 𝔛(𝑁), and

𝔛(𝑁) = 𝔛(𝑁) ⊕ 𝔛⊥(𝑁) .
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A.2.2 The induced connection

In this section, we will consider 𝑁 a semi-Riemannian submanifold of 𝑀 , and
denote the Levi-Civita connections of 𝑁 by ∇ and of 𝑀 by ∇. If 𝑋 ∈ 𝔛(𝑁) and
𝑌 ∈ 𝔛(𝑁), it is not immediately possible to ascribe meaning to ∇𝑋𝑌 , since 𝑋 and
𝑌 are not vector fields defined on an open subset of 𝑀 . However, for 𝑝 ∈ 𝑁 , 𝑋
and 𝑌 can be extended to vector fields 𝑋 and 𝑌 defined on a neighbourhood 𝑈 of
𝑝 in 𝑀 . Then, one could tentatively define

∇𝑋𝑌 =

(
∇
𝑋
𝑌

)���
𝑈∩𝑁

.

We will show below that this object is indeed well-defined, i.e., does not depend
on the particular extensions of 𝑋 and 𝑌 used. The result is also a vector field in
𝑋 (𝑁). This operation is called the induced connection on 𝑁 .

Proposition 49. ∇𝑋𝑌 is a well-defined smooth 𝑀-vector field on 𝑁 .

Proof. Being the restriction of a smooth vector field on 𝑀 to 𝑁 , the induced
connection is a smooth 𝑀-vector field on 𝑁 . All we need to show is that the choice
of the extensions 𝑋 and𝑌 does not influence the final result. Let𝑈 be a coordinate
neighbourhood of 𝑀 which intercepts 𝑁 , and let the extension of 𝑌 be given by
𝑌 = 𝑓 𝑖𝜕𝑖 in that basis. Then,

∇
𝑋
𝑌 = 𝑋

[
𝑓 𝑖
]
𝜕𝑖 + 𝑓 𝑖∇

𝑋
𝜕𝑖 .

The value that the second term takes at 𝑝 ∈ 𝑈 ∩ 𝑁 only depends on the pointwise
values of 𝑋 and the functions 𝑓 𝑖. Therefore, its value is the same regardless of the
extensions 𝑋 and 𝑌 chosen. As for the first term, if 𝑋 correctly extends 𝑋 , then

𝑋
[
𝑓 𝑖
] ���
𝑈∩𝑁

= 𝑋
[
𝑓 𝑖
��
𝑈∩𝑁

]
,

which is also completely determined by the values of 𝑋 and 𝑌 on 𝑁 . □

The induced connection inherits a series of properties from the connection of
𝑀:
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Proposition 50. Let ∇ denote the induced connection on 𝑁 ⊂ 𝑀 , and let 𝑋,𝑌 ∈
𝔛(𝑁) and 𝑍,𝑊 ∈ 𝔛(𝑁).

1. ∇𝑋𝑍 is C∞(𝑁)-linear in 𝑋 .

2. ∇𝑋𝑍 is R-linear in 𝑍 .

3. ∇𝑋 𝑓 𝑍 = 𝑋 [ 𝑓 ]𝑍 + 𝑓∇𝑋𝑍 , for all 𝑓 ∈ C∞(𝑁).

4. ∇𝑋𝑌 − ∇𝑌𝑋 − [𝑋 , 𝑌 ] = 0.

5. 𝑋 [⟨𝑍 , 𝑊⟩] =
〈
∇𝑋𝑍 , 𝑊

〉
−

〈
𝑍 , ∇𝑋𝑊

〉
.

It is a crucially important fact that, when 𝑋 and 𝑌 are both in 𝔛(𝑁), ∇𝑋𝑌 is
not in general also tangent to 𝑁 . In particular, ∇ does not reduce to the intrinsic
connection of 𝑁 .

Proposition 51. If 𝑋,𝑌 ∈ 𝔛(𝑁), then ∇𝑋𝑌 =

(
∇𝑋𝑌

)⊤
.

Proof. Take a third vector field 𝑍 ∈ 𝔛(𝑁) and let 𝑋 , 𝑌 and 𝑍 be extensions of 𝑋 ,
𝑌 and 𝑍 to 𝑀 . Then, by the Koszul formula,

2
〈
∇
𝑋
𝑌 , 𝑍

〉
= 𝑋

[〈
𝑌 , 𝑍

〉]
+ 𝑌

[〈
𝑋 , 𝑍

〉]
− 𝑍

[〈
𝑋 , 𝑌

〉]
−

−
〈
𝑋 ,

[
𝑌 , 𝑍

]〉
−

〈
𝑌 ,

[
𝑋 , 𝑍

]〉
+

〈
𝑍 ,

[
𝑋 , 𝑌

]〉
.

By definition, the left hand side restricts to 2
〈
∇𝑋𝑌 , 𝑍

〉
on 𝑁 . Meanwhile, the right

hand side reduces to the same expression in terms of 𝑋 , 𝑌 and 𝑍 . By the Koszul
formula for the Levi-Civita connection of 𝑁 , that expression equals 2⟨∇𝑋𝑌 , 𝑍⟩.
Therefore, we have

2
〈
∇𝑋𝑌 , 𝑍

〉
= 2⟨∇𝑋𝑌 , 𝑍⟩ ,

for all 𝑍 ∈ 𝔛(𝑁). This implies
(
∇𝑋𝑌

)⊤
= ∇𝑋𝑌 . □

The normal component of ∇𝑋𝑌 for 𝑋 and 𝑌 tangent to 𝑁 also has several
interesting properties. It is called the second fundamental form or shape tensor
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of 𝑁 and defined using the following expression:

∇𝑋𝑌 = ∇𝑋𝑌 + II(𝑋,𝑌 ) . (A.2)

The proposition below establishes its most basic properties:

Proposition 52. The function II : 𝔛(𝑁) × 𝔛(𝑁) → 𝔛⊥(𝑁) defined by (A.2) is
C∞(𝑁)-bilinear and symmetric.

Proof. The expression II(𝑋,𝑌 ) is immediately C∞(𝑁)-linear in 𝑋 , since it is just
the normal component of ∇𝑋𝑌 . We will now prove that II(𝑋,𝑌 ) is symmetric, and
then C∞(𝑁)-linearity in 𝑌 will follow. Indeed,

II(𝑋,𝑌 ) − II(𝑌, 𝑋) =
(
∇𝑋𝑌 − ∇𝑌𝑋

)⊥
= [𝑋 , 𝑌 ]⊥ = 0 ,

where we have used item 4 from Proposition 50 and the fact that the Lie bracket
of two vector fields in 𝔛(𝑁) is also in 𝔛(𝑁). □

Once again, it follows from properties of ∇ that II(𝑋,𝑌 ) at a point 𝑝 ∈ 𝑁

depends on 𝑋 only through its pointwise value 𝑋 (𝑝). By symmetry, the same
holds for𝑌 . Therefore, II smoothly assigns to each 𝑝 ∈ 𝑁 a bilinear transformation
𝑇𝑝𝑁 × 𝑇𝑝𝑁 →

(
𝑇𝑝𝑁

)⊥.
Contraction of II yields a normal vector field on 𝑁 , denoted by 𝐻 and known

as the mean curvature vector field of 𝑁 ⊂ 𝑀:

𝐻 (𝑝) = 1
𝑛

𝑛∑︁
𝑖=1

𝜎𝑖 II(𝑒𝑖, 𝑒𝑖) ,

where {𝑒1, . . . , 𝑒𝑛} is a basis for 𝑇𝑝𝑁 and 𝜎𝑖 = 1
⟨𝑒𝑖 , 𝑒𝑖⟩ .

A.2.3 The normal connection

The normal connection of a sub-Riemannian manifold 𝑁 ⊂ 𝑀 is defined in a
similar way to the induced connection. However, instead of taking the tangential
component of ∇𝑋𝑌 for 𝑋 and 𝑌 two tangential vector fields on 𝑁 , we now take the
normal component of ∇𝑋𝑍 for 𝑋 a tangential vector field and 𝑍 a normal vector
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field on 𝑁:

∇⊥
𝑋𝑍 :=

(
∇𝑋𝑍

)⊥ (
∀𝑋 ∈ 𝔛(𝑁) , ∀𝑍 ∈ 𝔛⊥(𝑁)

)
.

The normal connection has the following elementary properties:

1. ∇⊥
𝑋
𝑍 is C∞(𝑁)-linear in 𝑋 and R-linear in 𝑍 .

2. ∇⊥
𝑋
𝑓 𝑍 = 𝑋 [ 𝑓 ]𝑍 + 𝑓∇⊥

𝑋
𝑍 , for all 𝑓 ∈ C∞(𝑁).

3. 𝑋 [⟨𝑍 , 𝑊⟩] =
〈
∇⊥
𝑋
𝑍 , 𝑊

〉
+
〈
𝑍 , ∇⊥

𝑋
𝑊

〉
, for all 𝑋 ∈ 𝔛(𝑁) and 𝑍,𝑊 ∈ 𝔛⊥(𝑁).

Consider a curve 𝛾 : 𝐼 → 𝑁 and let 𝑍 be a vector field along 𝛾 normal to
𝑁 . We say that 𝑍 is normal parallel along 𝛾 if ∇⊥

𝛾′𝑍 vanishes identically. The
concept of normal parallel transport is analogous to that of parallel transport for
the usual connection, and is established by the following proposition:

Proposition 53. Let 𝑝 ∈ 𝑁 , 𝛾 : (−𝜀, 𝜀) → 𝑁 a curve such that 𝛾(0) = 𝑝 and
𝑧 ∈

(
𝑇𝑝𝑁

)⊥. Then, there exists a unique vector field 𝑍 normal parallel along 𝛾
such that 𝑍 (0) = 𝑧.

This result follows from existence and uniqueness theorems for linear ordinary
differential equations by noticing that the map

∇⊥
𝛾′ : 𝐼 × 𝔛⊥(𝑁) −→ 𝔛⊥(𝑁)

which appears in the constraint ∇⊥
𝛾′𝑍 = 0 is linear in 𝑍 (note that it is not C∞(𝑁)-

linear, but it is R-linear).
Much like the second fundamental form II(𝑋,𝑌 ) is defined as the normal part

of the induced connection for two tangent vector fields 𝑋 and 𝑌 , we define an
object ĨI(𝑋, 𝑍) as the tangent component of ∇𝑋𝑍 for any 𝑋 tangent and 𝑍 normal
to 𝑁 . ĨI is also C∞(𝑁)-bilinear and depends only pointwise on 𝑋 and 𝑍 .

In summary, we have

∇𝑋𝑌 = ∇𝑋𝑌 + II(𝑋,𝑌 )
∇𝑋𝑍 = ĨI(𝑋, 𝑍) + ∇⊥

𝑋𝑍 ,
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where, in each equation, the first term in the right hand side is tangent to 𝑁 , and
the second is normal. II and ĨI are also related by the following equation:

⟨II(𝑋,𝑌 ) , 𝑍⟩ = −
〈
𝑋 , ĨI(𝑌, 𝑍)

〉
,

for all 𝑋,𝑌 ∈ 𝔛(𝑁) and all 𝑍 ∈ 𝔛⊥(𝑁). Indeed, since ⟨𝑌 , 𝑍⟩ = 0 everywhere,

𝑋 [⟨𝑌 , 𝑍⟩] =
〈
∇𝑋𝑌 , 𝑍

〉
+

〈
𝑌 , ∇𝑋𝑍

〉
0 =

〈(
∇𝑋𝑌

)⊥
, 𝑍

〉
+

〈
𝑌 ,

(
∇𝑋𝑍

)⊤〉
0 = ⟨II(𝑋,𝑌 ) , 𝑍⟩ +

〈
𝑌 , ĨI(𝑋, 𝑍)

〉
(the form written previously then follows by symmetry of II).



Appendix B

Completion of the proofs of
Theorems 18 and 26

Recall that in the proofs of Theorems 18 and 26 there was left pending the
point of the convergence of the sequence

{
𝐻⊥
𝛾 (𝑋𝑛, 𝑋𝑛)

}
to 𝐻⊥

𝛾 (𝑋, 𝑋), for a certain
family of vector fields 𝑋𝑛 on 𝛾 which converged pointwise to 𝑋 . In this Appendix,
we shall clear up that point, thus completing both proofs. For definiteness, we
shall work within the context of Theorem 18, but the procedure is exactly the same
for Theorem 26.

The following corollary of Taylor’s theorem shall play a fundamental role in
the proof:

Proposition 54. Let 𝑓 : [𝑎, 𝑏] → R be a smooth function and suppose 𝑓 (0) (𝑐) =
. . . = 𝑓 (𝑁) (𝑐) = 0, for some 𝑐 ∈ [𝑎, 𝑏]. Then, for every 𝑥 ∈ [𝑎, 𝑏],

𝑓 (𝑥) = (𝑥 − 𝑐)𝑁+1𝑔(𝑥) ,

where 𝑔 is another smooth function on [𝑎, 𝑏].

Proof. Take the Taylor expansion of 𝑓 around 𝑐 to order 𝑁 , which is legitimate
since 𝑓 is smooth:

𝑓 (𝑥) =
𝑁∑︁
𝑛=0

𝑓 (𝑛) (𝑐) (𝑥 − 𝑐)𝑛
𝑛!

+ 𝐸𝑁 (𝑥) ,

86
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where the error 𝐸𝑁 (𝑥) is given by

𝐸𝑁 (𝑥) =
1
𝑁!

𝑥∫
𝑐

(𝑥 − 𝑡)𝑁 𝑓 (𝑁+1) (𝑡) d𝑡 .1

Note that, by the hypotheses, the Taylor polynomial vanishes, and we are left
simply with 𝑓 (𝑥) = 𝐸𝑁 (𝑥). By introducing the substitution 𝑡 = (𝑥 − 𝑐)𝑠 + 𝑐 into
the error formula, we find the alternate form

𝐸𝑁 (𝑥) =
(𝑥 − 𝑐)𝑁+1

𝑁!

1∫
0

(1 − 𝑠)𝑁 𝑓 (𝑁+1) ((𝑥 − 𝑐)𝑠 + 𝑐) d𝑠 ,

and, since 𝑓 is smooth, the integral term is infinitely differentiable with respect to
𝑥. □

Recall that we had defined the sequence {𝑋𝑛} via

𝑋𝑛 (𝑢) =


𝑋 (𝑢) , for 𝑢 ∈ [𝑎, 𝑟𝑛](
1 − 2

𝑢 − 𝑟𝑛
𝑏 − 𝑟𝑛

)
𝑌𝑛 (𝑢) , for 𝑢 ∈

(
𝑟𝑛,

𝑏+𝑟𝑛
2

)
0 , for 𝑢 ∈

[
𝑏+𝑟𝑛

2 , 𝑏

] ,

where 𝑟𝑛 = 𝑏 − 1/𝑛, 𝑌𝑛 is the parallel transport of 𝑋 (𝑟𝑛) along 𝛾, and the sequence
is taken to start from 𝑛 large enough that all the 𝑟𝑛 lie within the final smooth
component of the (piecewise smooth) vector field 𝑋 . Thus, we have, for the
covariant derivative of 𝑋𝑛 along 𝛾,

𝑋′
𝑛 (𝑢) =


𝑋′(𝑢) , for 𝑢 ∈ [𝑎, 𝑟𝑛)

−2𝑛𝑌𝑛 (𝑢) , for 𝑢 ∈
(
𝑟𝑛,

𝑏+𝑟𝑛
2

)
0 , for 𝑢 ∈

(
𝑏+𝑟𝑛

2 , 𝑏

] .

1See, e.g., [37], chapter 7.
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Note that 𝑋′
𝑛 is not defined at the breaks 𝑟𝑛 and 𝑏+𝑟𝑛

2 . We can then calculate

𝐻⊥
𝛾 (𝑋𝑛, 𝑋𝑛) =

𝑟𝑛∫
𝑎

[⟨𝑋′ , 𝑋′⟩ + ⟨𝑅(𝑋, 𝛾′)𝑋 , 𝛾′⟩] d𝑢 +

+

𝑏+𝑟𝑛
2∫

𝑟𝑛

4𝑛2⟨𝑌𝑛 , 𝑌𝑛⟩ d𝑢 +

+

𝑏+𝑟𝑛
2∫

𝑟𝑛

[1 − 2𝑛(𝑢 − 𝑟𝑛)]2⟨𝑅(𝑌𝑛, 𝛾′)𝑌𝑛 , 𝛾′⟩ d𝑢 .

Since 𝑟𝑛 → 𝑏, it is clear that the first term converges to 𝐻⊥
𝛾 (𝑋, 𝑋). We now show

that the other terms tend to 0. Because 𝑌𝑛 is parallel, the integrand in the second
term is constant and equal to 4𝑛2⟨𝑋 (𝑟𝑛) , 𝑋 (𝑟𝑛)⟩. Besides, the fact that 𝑋 (𝑏) = 0
implies that the function ⟨𝑋 , 𝑋⟩ vanishes with derivative 0 at the same point:

⟨𝑋 , 𝑋⟩′(𝑏) = 2⟨𝑋 (𝑏) , 𝑋′(𝑏)⟩ = 0 .

By Proposition 54 above, this observation implies that ⟨𝑋 , 𝑋⟩ can be written,
in the last smooth component of 𝑋 , as (𝑏 − 𝑢)2𝑔(𝑢), where 𝑔 is another smooth
function. Therefore, in particular,

⟨𝑋 (𝑟𝑛) , 𝑋 (𝑟𝑛)⟩ ≤ (𝑏 − 𝑟𝑛)2𝐺 ,

where 𝐺 denotes the supremum of |𝑔 | in the final smooth component of 𝑋 , and
hence �������

𝑏+𝑟𝑛
2∫

𝑟𝑛

4𝑛2⟨𝑌𝑛 , 𝑌𝑛⟩ d𝑢

������� ≤ 1
2𝑛

· 4𝑛2 · 𝐺
𝑛2 ,

which goes to zero as 𝑛 tends to infinity.
Now we turn to the third term. Using the definition of sectional curvature and



APPENDIX B. COMPLEMENT TO THEOREMS 18 AND 26 89

the fact that 𝑌𝑛 is perpendicular to 𝛾, we can write

⟨𝑅(𝑌𝑛, 𝛾′)𝑌𝑛 , 𝛾′⟩ = 𝑐⟨𝑌𝑛 , 𝑌𝑛⟩𝐾 (𝑌𝑛, 𝛾′) ,

where 𝑐 = ⟨𝛾′ , 𝛾′⟩. Once again, ⟨𝑌𝑛 , 𝑌𝑛⟩ is constant and its module bounded by
𝐺/𝑛2. The sectional curvature 𝐾 is also bounded at each point along the curve,
and hence we can find a positive real number 𝑀 such that |𝐾 (𝑌𝑛, 𝛾′) | < 𝑀 for
each 𝑢 ∈

[
𝑟𝑛,

𝑏+𝑟𝑛
2

]
and each 𝑛. Therefore,�������

𝑏+𝑟𝑛
2∫

𝑟𝑛

[1 − 2𝑛(𝑢 − 𝑟𝑛)]2⟨𝑅(𝑌𝑛, 𝛾′)𝑌𝑛 , 𝛾′⟩ d𝑢

������� ≤ 𝑀𝐺𝑐

𝑛2

�������
𝑏+𝑟𝑛

2∫
𝑟𝑛

[1 − 2𝑛(𝑢 − 𝑟𝑛)]2 d𝑢

������� .
A simple integration by substitution shows that the integral on the right hand side
is 1/6𝑛, which allows us to conclude that this term also goes to zero as 𝑛→ +∞.
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