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ABSTRACT

We consider the effect of lensing magnification on high redshift sources in the case that
magnification varies on the sky, as expected in wide fields of view or within observed
galaxy clusters. We give expressions for number counts, flux and flux variance as inte-
grals over the probability distribution of the magnification. We obtain these through
a simple mapping between averages over the observed sky and over the magnification
probability distribution in the source plane. Our results clarify conflicting expressions
in the literature and can be used to calculate a variety of magnification effects. We
highlight two applications: 1. Lensing of high-z galaxies by galaxy clusters can provide
the dominant source of scatter in SZ observations at frequencies larger than the SZ
null. 2. The number counts of high-z galaxies with a Schechter-like luminosity function
will be changed at high luminosities to a power law, with significant enhancement of
the observed counts at L >

∼
10 L

∗.

1 INTRODUCTION

Magnification due to gravitational lensing leads to observ-
able effects, namely changes in the number density of galax-
ies behind large-scale structure and galaxy clusters (known
as magnification bias) and in the moments of the flux dis-
tribution due to unresolved sources at high redshift. These
and other effects of lensing magnification have been studied
extensively in the last few decades, usually assuming sim-
ple expressions that apply only for constant magnifications.
What is less clear in the literature is how the lensing formal-
ism generalizes to the case where magnification varies on the
sky.

In this brief note, we derive how observables are calcu-
lated given a magnification probability derived in the source
plane, while quantities of interested are observed as aver-
ages in the image plane. We apply this calculation to lens-
ing of the intrinsic number count distributions of high red-
shift galaxies as well as moments of the flux for Poisson dis-
tributed high-z galaxies behind galaxy clusters. Our goal is
to provide the formulae needed for magnification effects in a
variety of physical situations and give estimates of the scale
of the main effects. Applications to more detailed models
and results for Sunyaev-Zel’dovich surveys have been pre-
sented in a separate paper (Lima, Jain & Devlin 2009).

2 CONSTANT MAGNIFICATION

By definition, magnification (denoted µ) is the Jacobian
of the transformation between image (lensed) and source
(unlensed) coordinates (e.g. Bartelmann & Schneider 2001).
Along a given line of sight, its effect on differential solid
angles is given by

dΩ → dΩobs = µdΩ , (1)

or µ = dΩobs/dΩ. We use subscript “obs” for the observed
(or lens plane or image plane) and no subscript for the
(unlensed) source plane. The surface brightness of galaxy
sources, defined as the flux per unit solid angle, is conserved
by lensing. Since magnification increases the solid angle of
sources by a factor µ, it also increases their flux S as

S → Sobs = µS . (2)

In terms of the lensing shear γ and convergence κ, the mag-
nification is given by µ = 1/[(1− κ)2 − |γ|2].

As a result, the number density of a source population
is modified by lensing magnification. Let dn/dS denote the
intrinsic number density per unit flux per unit steradian on
the sky. Given a (constant) magnification µ, it is modified
as

dn

dS
→

dnobs(Sobs)

dSobs

=
1

µ2

dn

dS

(

Sobs

µ

)

. (3)

The 1/µ2 factor comes from transforming the angle dΩ and
the flux differential dS into their observed counterparts us-
ing Eqns. 1 and 2. The change in argument comes from the
fact that the observed flux Sobs corresponds to true flux
S = Sobs/µ.

Given the differential number density dn/dS, we may
define the cumulative number density n(> S), the average
flux of the background galaxy population per steradian S
and the mean square flux per steradian S2 as

n(> S) =

∫

S

dn

dS′
dS′ , (4)

S =

∫

S
dn

dS
dS , (5)

S2 =

∫

S2 dn

dS
dS . (6)
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2 Jain and Lima

In the presence of a constant mangification µ, the observed
quantities are easily obtained using Eqns. 2 and 3 as:

n(> S) →
1

µ
n

(

>
Sobs

µ

)

, S → S, S2 → µ S2. (7)

Note that in the integrals over S for S and S2 there is no
upper or lower cutoff in flux.

There is a long history in the literature of magnifica-
tion effects on source counts (starting with Canizares (1981,
1982) and Peacock (1982)). The expressions above are con-
sistent with those in the literature. However for the case of
variable magnification, there appears to be some confusion
as the cosmology literature contains conflicting expressions
– including recent years when the focus has been on mag-
nification effects due to galaxy clusters as observed in SZ
(Sunyaev-Zel’dovich) or X-ray surveys. The careful treat-
ment of variable magnification in the source and image plane
in the study of microlensing (e.g. Schneider 1987) was not
transmitted adequately to applications in cosmology.

3 VARIABLE MAGNIFICATION ON THE SKY

We wish to generalize Eqns. 3 and 7 to the case that the
magnification varies on the sky. This variation can occur
over a large patch of the sky with fluctuations due to large-
scale structure or simply over the surface of a galaxy cluster
due to variations in the surface mass density and shear over
this surface.

In terms of the normalized probability of magnification
P (µ), we aim to derive the following expressions:

〈

dnobs(Sobs)

dSobs

〉

=
1

〈µ〉

∫

dµ
P (µ)

µ

dn

dS

(

Sobs

µ

)

, (8)

〈nobs(> Sobs)〉 =
1

〈µ〉

∫

dµP (µ) n

(

>
Sobs

µ

)

, (9)

〈Sobs〉 = S , (10)

〈S2
obs〉 =

〈µ2〉

〈µ〉
S2 , (11)

where 〈〉 denote averages of observed quantities over speci-
fied parts of the sky.

To evaluate the expressions on the LHS of the above
equations we define the average of a function X in the image
plane over an observed solid angle as

〈X〉obs ≡
1

∆Ωobs

∫

dΩobsX . (12)

In the source (unlensed) plane the average over solid angle
also defines P (µ)

〈X〉source ≡
1

∆Ω

∫

dΩ X ≡

∫

dµP (µ) X . (13)

The function X is a function of angle θ on the sky through
its dependence on µ(θ). Defining P (µ) on the source plane
is conventional in lensing as it addresses questions such as,
what is the fraction of sources that are magnified by a certain

amount? 1 Note that we have as desired
∫

dµP (µ) =
1

∆Ω

∫

dΩ = 1 , (14)

∫

dµ µP (µ) =
1

∆Ω

∫

dΩ µ(θ) ≡ 〈µ〉 =
∆Ωobs

∆Ω
. (15)

In the limit of the whole sky, we have ∆Ωobs = ∆Ω = 4π
and 〈µ〉 = 1, i.e. the average magnification is unity.

Using the relations given above for angular averaging,
we can obtain Eqn. 8 as follows:
〈

dnobs(Sobs)

dSobs

〉

=
1

∆Ωobs

∫

dΩobs
dnobs(Sobs)

dSobs

(16)

=
1

〈µ〉∆Ω

∫

dΩ µ
1

µ2

dn

dS

(

Sobs

µ

)

=
1

〈µ〉

∫

dµ P (µ)
1

µ

dn

dS

(

Sobs

µ

)

.

This is our first desired result. It is different from integrating
the expression for dnobs/dSobs from Eqn. 3 over P (µ) – doing
that would have led to both factors of 1/µ being inside the
integrand.

Next we substitute Eqn. 3 into

〈nobs(> Sobs)〉 =
1

∆Ωobs

∫

dΩobs

∫

Sobs

dnobs(S
′
obs)

dS′
obs

dS′

obs ,

and change variables to S′ = S′
obs/µ to obtain Eqn. 9. Our

expressions for number counts agree with Schneider (2006).
Note that the unlensed number counts are independent of
position on the sky, as are S and S2.

We obtain Eqns. 10 and 11 for the observed flux mo-
ments similarly. For example to obtain 〈S2

obs〉 we have

〈S2
obs〉 =

1

∆Ωobs

∫

dΩobs

∫

S2
obs

dnobs(Sobs)

dSobs

dSobs (17)

=
1

〈µ〉∆Ω

∫

dΩ µ

∫

S2
obs

1

µ2

dn

dS

(

Sobs

µ

)

dSobs

=
1

〈µ〉

∫

dµ P (µ)µ2

∫

S2 dn(S)

dS
dS =

〈µ2〉

〈µ〉
S2 .

where in the last line, we have again changed variables S =
Sobs/µ. The above equation easily generalizes to the n-th
moment as 〈Sn

obs〉 = 〈µn〉/〈µ〉 Sn.
The expressions above change if there is a lower or

higher limit to the integral over S. For instance in the case
of an upper limit Scut, we can generalize to obtain

Sn
obs(< Scut) =

1

〈µ〉

∫

dµ P (µ)µn Sn

(

<
Scut

µ

)

. (18)

Applications to galaxy clusters are discussed below. Another
application is the contribution of unresolved point sources
to CMB anisotropies, given by Cℓ = S2(< Scut). The upper

1 One must of course ensure that theoretical predictions are also
in the source plane. This occurs naturally in ray tracing sim-
ulations which start the rays at the observer and trace back-

wards (e.g. Jain, Seljak & White 2000). However predictions that
rely on the Born approximation apply to the image plane. The
magnification probability in the image plane is (e.g. Eqn. 16):
Pimage(µ) = µ P (µ)/〈µ〉, so it is straightforward to relate the im-
age and source plane probabilities. See Hilbert et al. (2008) for a
discussion of simulation predictions; they also consider the effects
of multiple imaging which we are not concerned with here.
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Magnification Effects on Source Counts and Fluxes 3

Figure 1. Left: Mean magnification 〈µ〉 and mean squared 〈µ2〉 measured within clusters at redshift z = 0.5 as a function of cluster mass.
The upper panel averages within the virial radius of the cluster while the lower panel uses a smaller radius within which the overdensity
is 2500 times the critical density. In X-ray and SZ analysis, different choices for the cluster radius are made which typically lie within
these two. Right: Contamination of submillimeter galaxies to the SZ flux within the virial radius of clusters of virial mass Mvir = 1014.6

and 1015h−1M⊙. The solid line shows the intrinsic SZ flux ∆SSZ
ν . The light shaded region delineate the 1-σ region from contamination

of submillimeter galaxies from Poisson noise in their counts, i.e. σ2
gal

= S2
vir. The dark shaded region accounts for lensing magnification,

which further enhances the noise by 〈µ2〉/〈µ〉, cf. Eqn 21.

cutoff Scut is usually introduced to remove resolved objects
brighter than the cutoff. With lensing the observed contribu-
tion is enhanced – given by the above result with n = 2. The
enhancement depends on the slope of the dn/dS relation at
the cutoff. Finally we note that with a flux limit Eqn. 10
is no longer true, since surface brightness is only conserved
when integrated over all fluxes.

4 GALAXY CLUSTERS

Galaxy clusters produce magnifications ranging from ∼ 10%
enhancements above unity to factors of several or more as
one approaches the critical curves. As a result both num-
ber counts of background galaxies and the flux moments of
unresolved background sources are significantly altered.

Consider the unlensed average number of background
galaxies within a cluster solid angle ∆Ωvir defined by its
virial radius, i.e. Nvir = ∆Ωvirn(> S). Notice that in the
unlensed case ∆Ωvir = ∆Ω, i.e. the virial radius of the clus-
ter is actually the intrinsic angle. With lensing the virial
radius is now the observed solid angle, i.e. ∆Ωvir = ∆Ωobs,
and we have

〈Nobs(> Sobs)〉vir = ∆Ωvir〈nobs(> Sobs)〉 (19)

=
1

〈µ〉

∫

dµP (µ) N

(

>
Sobs

µ

)

vir

.

Note that P (µ) is now the magnification probability within
the cluster virial radius (in the source place as before). In
the limit of constant magnification inside the virial radius
we get Nobs = N/µ. Furthermore, if there is no lower limit

to the flux integral Sobs → 0, we have 〈Nobs〉 = N/〈µ〉, i.e.
we observe fewer galaxies in the line of sight of clusters. Note
that our result for Nobs appears to differ from some of the
literature (e.g. Schneider 2006), but the difference is that we
use the same solid angle for the observed and unlensed case,
because the only solid angle in town is the observed size of
the galaxy cluster.

The intrinsic mean flux and mean square flux within
the cluster solid angle ∆Ωvir are Svir = ∆ΩvirS and S2

vir =
∆ΩvirS2. With lensing we have

〈Sobs〉vir = ∆Ωvir〈Sobs〉 = Svir , (20)

〈S2
obs〉vir = ∆Ωvir〈S2

obs〉 =
〈µ2〉

〈µ〉
S2

vir . (21)

Consider a cluster of observed radius 1 arcmin. The
average flux from background galaxies crossing this 1 arcmin
cluster is the same with or without lensing: with lensing, the
background galaxies are brighter but less numerous and the
two effects exactly compensate. So, lensing does not create a
bias by increasing the expected flux within the cluster solid
angle relative to a random 1 arcmin patch of the sky, as long
as there is no flux cutoff.

For SZ surveys, the mean flux from background galaxies
is subtracted in obtaining the SZ decrement or increment
(depending on the observed frequency), but there is addi-
tional scatter due to the Poisson error from shot noise fluc-
tuations (a given cluster having more or less galaxies than
the expected average). This effect is important for SZ sur-
veys, where high-z submillimeter galaxies can contaminate
the SZ signal (White & Majumdar 2004; Knox et al. 2004;

c© 0000 RAS, MNRAS 000, 000–000



4 Jain and Lima

Figure 2. Left panel: Intrinsic and lensed galaxy number density dn/dlnS using different lensing prescriptions. The true underlying
distribution is assumed to be of a Schechter type, which is then lensed by intervening halos. The solid (green) curves use Eqn. 8; the
two alternatives shown (and described in Section 5.2) can change the predicted counts by an order of magnitude or more at the high
luminosity end. Right panel: As above, but for different source redshifts. Also shown are data points of submillimeter galaxies measured
by BLAST at 500µm. A population of galaxies with a Schechter-like luminosity function at z >

∼ 2 can fit the data with the inclusion of
lensing magnification.

Lima, Jain & Devlin 2009). Lensing enhances this source of
scatter significantly, as the factor 〈µ2〉/〈µ〉 for galaxy clus-
ters can be quite large – see Fig. 1. The estimates shown are
based on an analytical model of cluster halos that uses NFW
profiles and elliptical iso-potential contours (Lima, Jain &
Devlin 2009). Our estimates are conservative in that we in-
clude cluster ellipticity but not substructure.

Notice that if we attempt to remove galaxies above some
flux Scut, which could be removed if they were resolved, we
introduce a difference between the observed and intrinsic av-
erage flux through the cluster, i.e. 〈Sobs〉 6= S. In that case,
the mean CMB flux is not equally contaminated by back-
ground galaxies and subtracting this mean flux from the
cluster flux does not cancel the galaxy contribution on av-
erage. Therefore, removing bright galaxies from the sample
biases the SZ signal. An observationally relevant situation
arises if a flux cutoff is used to identify sources – thus al-
tering both the number counts and flux contribution from
unresolved sources (e.g. Refregier & Loeb (1997)).

5 ILLUSTRATIVE NUMBER-MAGNITUDE

RELATIONS

5.1 Power law

It is common in the magnification bias literature to consider
the case of a local power law in the logarithm of the number
counts. We then obtain for the observed cumulative number
density:

n(> S) ∝ S−α → nobs(> Sobs) =
〈µα〉

〈µ〉
n(> Sobs). (22)

Working with apparent magnitudes instead of fluxes this
gives (using m = −2.5log10S + Constant)

n(< m) ∝ ms → nobs(< mobs) =
〈µ2.5s〉

〈µ〉
n(< mobs). (23)

Note that the use of the power law for n(> S) allows us to
simplify the integral over µ. The above equation agrees with
the standard expression (e.g. Broadhurst, Taylor & Peacock
1995): nobs(< m) = µ2.5s−1 n(< m) for the case of con-
stant magnification. For variable magnification, one needs
to evaluate the averages as above. If one simply uses the
factor 〈µ2.5s−1〉 behind a galaxy cluster instead of Eqn. 23,
an error in the number counts can result. The error ranges
from 3% for a cluster of mass 1014M⊙/h to 6% for a mass
of 1015M⊙/h. This would result in an equivalent bias in the
inferred cluster mass. Mass estimates that rely on number
counts may be feasible for large samples of clusters from
future surveys.

To contrast the results from Eqn. 8 with other formulae
used in the literature, consider first the naive generalization
to variable magnification:

Prescription A :
dnobs(Sobs)

dSobs

=

∫

dµ
P (µ)

µ2

dn

dS

(

Sobs

µ

)

. (24)

This underestimates the lensing effect. Alternatively some
authors drop the µ factors altogether which overestimates
the lensing effect:

Prescription B :
dnobs(Sobs)

dSobs

=

∫

dµP (µ)
dn

dS

(

Sobs

µ

)

. (25)
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5.2 Schechter luminosity function

A single power law number-magnitude relation is lensed into
an observed relation with same power law (but different am-
plitude). However if the intrinsic dn/dS is not a power law,
then lensing changes the shape of the distribution as well.
High magnification events shift galaxies with low fluxes to
high fluxes – hence if dn/dS falls sharply at high S, magni-
fication can significantly enhance the counts at these fluxes.

We illustrate the effect of magnification for realis-
tic galaxy populations by considering a Schechter function
(Schechter 1976):

dn(S)

dS
∝

(

S

S∗

)α

e−S/S∗

. (26)

For galaxies observed in a narrow redshift interval, such a
dn/dS relation can arise due to the Schechter luminosity
function of the population.

In Fig. 2 we show the intrinsic distribution and the
lensed versions according to the two incorrect prescriptions
(denoted A and B) mentioned above, as well as the cor-
rect prescription of Eqn. 8. We assume all galaxies are at
redshift zs = 2.1 and use a P (µ) obtained from N-body
simulations by Hilbert et al (2007). We also choose α = 0
in the Schechter function. On the y-axis we plot dn/dlnS
to relate more easily to the observational literature which
shows number per unit absolute magnitude. Our results in
Fig. 2 may be matched with high-z luminosity functions by
replacing S/S∗ with L/L∗.

The lensing contribution (correctly included in the
green curves) is large for the Schechter function at the bright
end (S/S∗ > 10). Thus for a population of galaxies with a
Schechter luminosity function, the observed dn/dS will not
retain the exponential tail of the Schechter function. Using
Eqn. 8 and approximating the Schechter function as having
a sharp cutoff at S = S∗, it is easy to see that the integra-
tion over µ generates a power law in dn/dlnS whose slope
is −2, due to the asymptotic slope P (µ) ∝ µ−3. The green
curve approaches this slope beyond S = 10S∗.

Choosing a lower (higher) value of α slightly enhances
(suppresses) the lensing contribution at fixed S/S∗. Fig. 2
also shows that the difference between the three prescrip-
tions is large at the bright end for the Schechter function.

The dn/dS in Fig. 2 is normalized so that the dis-
tribution matches submillimeter galaxies measured by the
Balloon-borne Large Aperture Telescope (BLAST) (Devlin
et al 2009) at 500µm. These are shown by the data points
in the right panel of Fig. 2. Our results show that if the
sub-mm galaxies lie at z ∼ 2−3, then lensing of an intrinsic
Schechter function can explain the observations at high flux.
This is in contrast to the interpretation of two galaxy pop-
ulations, one with a Schechter function and the other with
an “inverted” Schechter function (Lagache et al 2004), that
has been advocated in the literature (without considering
lensing).

Similar comparsions to luminosity function observations
in the visible bands can be carried out: it is especially im-
portant to include lensing in the comparison of low-z data
with data at z >

∼ 1 since the magnification contribution is
significant only at high-z. Hence if lensing is not modeled,
the number of galaxies with L >

∼ 10 L∗ at high-z will be
overestimated.

6 DISCUSSION

We have derived expressions for computing average quanti-
ties in the observed image plane, given a distribution P (µ)
of magnifications in the source plane. Our results, summa-
rized in Eqns. 8-11, generalize expressions found in the lens-
ing literature for the case of constant magnifications. We
illustrated the effect of lensing on steep number counts of
background galaxies and on boosting the contamination that
high redshift galaxies induce in cluster SZ fluxes. The formu-
lae we have presented can be useful for studying the intrinsic
properties of high redshift galaxies and for current and up-
coming cluster surveys.

The quantitative estimates presented here for galaxy
clusters are based on analytical models of halos. While these
incorporate realistic density profiles as well as halo elliptic-
ity, they miss the full complexity of halo bimodality (due to
major mergers) and substructure. These features only en-
hance the effects of averaging we have considered.

Finally we note that the lensing effects discussed here
do not impact the predicted (magnification induced) cross-
correlation of number counts measured in different redshift
bins (Moessner & Jain 1998). Such cross-correlations depend
on the two-point cross-correlations of magnification with the
galaxy density. Thus measurements of magnification bias
from galaxy-quasar cross-correlations or of its contaminat-
ing effect on high-z ISW cross-correlations are unaffected by
the spatial averaging issues discussed here.
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