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Magnification effects on source counts and fluxes
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ABSTRACT
We consider the effect of lensing magnification on high-redshift sources in the case that
magnification varies on the sky, as expected in wide fields of view or within observed galaxy
clusters. We give expressions for number counts, flux and flux variance as integrals over
the probability distribution of the magnification. We obtain these through a simple mapping
between averages over the observed sky and over the magnification probability distribution in
the source plane. Our results clarify conflicting expressions in the literature and can be used to
calculate a variety of magnification effects. We highlight two applications: (i) lensing of high-z
galaxies by galaxy clusters can provide the dominant source of scatter in Sunyaev–Zel’dovich
(SZ) observations at frequencies larger than the SZ null; and (ii) the number counts of high-z
galaxies with a Schechter-like luminosity function will be changed at high luminosities to a
power law, with significant enhancement of the observed counts at L � 10L∗.
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1 IN T RO D U C T I O N

Magnification due to gravitational lensing leads to observable ef-
fects, namely changes in the number density of galaxies behind
large-scale structure and galaxy clusters (known as magnification
bias) and in the moments of the flux distribution due to unresolved
sources at high redshift. These and other effects of lensing magnifi-
cation have been studied extensively in the last few decades, usually
assuming simple expressions that apply for constant magnifications.

In this brief note, we generalize to the case where magnification
varies on the sky – the variation is taken to be given by a magnifi-
cation probability in the source plane, while quantities of interest
are observed as averages in the image plane. We apply this cal-
culation to lensing of the intrinsic number count distributions of
high-redshift galaxies as well as moments of the flux for Poisson-
distributed high-z galaxies behind galaxy clusters. Our goal is to
provide the formulae needed for magnification effects in a vari-
ety of physical situations and give estimates of the scale of the
main effects. Applications to more detailed models and results for
Sunyaev–Zel’dovich (SZ) surveys have been presented in a separate
paper (Lima, Jain & Devlin 2010a).

2 C ONSTANT MAGNIFICATION

By definition, magnification (denoted by μ) is the Jacobian of the
transformation between image (lensed) and source (unlensed) co-
ordinates (e.g. Bartelmann & Schneider 2001). Along a given line
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of sight, its effect on differential solid angles is given by

d� → d�obs = μd� (1)

or μ = d�obs/d�. We use the subscript ‘obs’ for the observed (or
lens plane or image plane) and no subscript for the (unlensed) source
plane. The surface brightness of galaxy sources, defined as the flux
per unit solid angle, is conserved by lensing. Since magnification
increases the solid angle of sources by a factor of μ, it also increases
their flux S as

S → Sobs = μS . (2)

In terms of the lensing shear γ and convergence κ , the magnification
is given by μ = 1/[(1 − κ)2 − |γ |2].

As a result, the number density of a source population is modified
by lensing magnification. Let dn/dS denote the intrinsic number
density per unit flux per unit steradian on the sky. Given a (constant)
magnification μ, it is modified as

dn

dS
→ dnobs(Sobs)

dSobs
= 1

μ2

dn

dS

(
Sobs

μ

)
. (3)

The 1/μ2 factor comes from transforming the angle d� and the
flux differential dS into their observed counterparts, using equations
(1) and (2). The change in argument comes from the fact that the
observed flux Sobs corresponds to true flux S = Sobs/μ. Given the
differential number density dn/dS, we may define the cumulative
number density n(>S), the average flux of the background galaxy
population per steradian S and the mean square flux per steradian
S2 as

n(> S) =
∫

S

dn

dS ′ dS ′ , (4)
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S =
∫

S
dn

dS
dS (5)

and

S2 =
∫

S2 dn

dS
dS, (6)

respectively. In the presence of a constant magnification μ, the
observed quantities are easily obtained using equations (2) and (3)
as

n(> S) → 1

μ
n

(
>

Sobs

μ

)
, S → S, S2 → μS2. (7)

Note that in the integrals over S for S and S2, there is no upper or
lower cut-off in flux.

There is a long history in the literature of magnification effects
on source counts (starting with Canizares 1981, 1982 and Peacock
1982). The expressions above are consistent with those in the lit-
erature. We next consider the case of variable magnification on the
sky.

3 VA R I A B L E M AG N I F I C AT I O N O N TH E S K Y

We wish to generalize equations (3) and (7) to the case that the
magnification varies on the sky. This variation can occur over a
large patch of the sky with fluctuations due to large-scale structure
or simply over the surface of a galaxy cluster due to variations in
the surface mass density and shear over this surface.

For variable magnification, the obvious step would be to av-
erage equations (3) and (7) over the observed sky (i.e. the im-
age plane), and this is indeed correct. It is often preferable to
do calculations in the source plane. Thus, we need to general-
ize dnobs/dSobs = ∫

dμ dn/dS Pobs(μ)/μ2, where Pobs(μ) is the
normalized magnification probability in the image plane. This is
straightforwardly done by using the relation

Pobs(μ) = μ

〈μ〉P (μ), (8)

where P(μ) is the source plane probability.
The above relation gives the generalized expressions〈
dnobs(Sobs)

dSobs

〉
= 1

〈μ〉
∫

dμ
P (μ)

μ

dn

dS

(
Sobs

μ

)
, (9)

〈nobs(> Sobs)〉 = 1

〈μ〉
∫

dμP (μ) n

(
>

Sobs

μ

)
, (10)

〈Sobs〉 = S, (11)

〈S2
obs〉 = 〈μ2〉

〈μ〉 S
2, (12)

where 〈〉 denote averages of observed quantities over specified parts
of the sky.

To obtain these results more formally, we evaluate the expressions
on the left-hand side of the above equations by defining the average
of a function X in the image plane over an observed solid angle as

〈X〉obs ≡ 1

��obs

∫
d�obsX. (13)

In the source (unlensed) plane, the average over solid angle also
defines P(μ) as

〈X〉source ≡ 1

��

∫
d�X ≡

∫
dμP (μ)X. (14)

The function X is a function of angle θ on the sky through its depen-
dence on μ(θ ). Defining P(μ) on the source plane is conventional
in lensing, as it addresses questions, such as what is the fraction of
sources that are magnified by a certain amount?1 Note that we have
as desired∫

dμP (μ) = 1

��

∫
d� = 1 , (15)

∫
dμ μP (μ) = 1

��

∫
d�μ(θ ) ≡ 〈μ〉 = ��obs

��
. (16)

In the limit of the whole sky, we have ��obs = �� = 4π and 〈μ〉 =
1, that is, the average magnification is unity.

Using the relations given above in equations (13)–(16) for angular
averaging, we can obtain equation (9) as follows:
〈

dnobs(Sobs)

dSobs

〉
= 1

��obs

∫
d�obs

dnobs(Sobs)

dSobs

= 1

〈μ〉��

∫
d� μ

1

μ2

dn

dS

(
Sobs

μ

)

= 1

〈μ〉
∫

dμ P (μ)
1

μ

dn

dS

(
Sobs

μ

)
. (17)

This is our first desired result. It is obviously different from in-
tegrating the expression for dnobs/dSobs from equation (3) over
P(μ) – doing that would have led to both factors of 1/μ being
inside the integrand. Next, we substitute equation (3) into

〈nobs(> Sobs)〉 = 1

��obs

∫
d�obs

∫
Sobs

dnobs(S ′
obs)

dS ′
obs

dS ′
obs ,

and change variables to S′ = S′
obs/μ to obtain equation (10). Our

expressions for number counts agree with Schneider, Kochanek
& Wambsganss (2006). Note that the unlensed number counts are
independent of position on the sky, as are S and S2. Equations (11)
and (12) for the flux moments can be similarly obtained and are
easily generalized to the nth moment as 〈Sn

obs〉 = 〈μn〉/〈μ〉 Sn.
This expression changes, if there is a lower or higher limit to the
integral over S. For instance, in the case of an upper limit Scut, we
can generalize to obtain

Sn
obs(< Scut) = 1

〈μ〉
∫

dμ P (μ)μn Sn

(
<

Scut

μ

)
. (18)

Applications to galaxy clusters are discussed below. Another
application is the contribution of unresolved point sources to cos-
mic microwave background (CMB) anisotropies, given by C� =
S2(<Scut). The upper cut-off, Scut, is usually introduced to remove
resolved objects brighter than the cut-off. With lensing, the ob-
served contribution is enhanced – given by the above result with n =
2. The enhancement depends on the slope of the dn/dS relation at
the cut-off. Finally, we note that with a flux limit, equation (11)
is no longer true, since surface brightness is only conserved when
integrated over all fluxes.

1One must of course ensure that theoretical predictions are also in the source
plane. This occurs naturally in ray-tracing simulations, which start the rays at
the observer and trace backwards (e.g. Jain, Seljak & White 2000). However,
predictions that rely on the Born approximation apply to the image plane.
See Hilbert et al. (2007) for a discussion of simulation predictions; they also
considered the effects of multiple imaging, which we are not concerned with
here.
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4 G ALAXY CLUSTERS

Galaxy clusters produce magnifications ranging from ∼10 per cent
enhancements above unity to factors of several or more as one ap-
proaches the critical curves. As a result, both number counts of
background galaxies and the flux moments of unresolved back-
ground sources are significantly altered. Consider the unlensed av-
erage number of background galaxies within a cluster solid angle
��vir defined by its virial radius, that is, Nvir = ��vir n(>S). Note
that in the unlensed case ��vir = ��, that is, the virial radius of
the cluster is actually the intrinsic angle. With lensing, the virial
radius is now the observed solid angle, that is, ��vir = ��obs, and
we have

〈Nobs(> Sobs)〉vir = ��vir〈nobs(> Sobs)〉

= 1

〈μ〉
∫

dμP (μ)N

(
>

Sobs

μ

)
vir

. (19)

Note that P(μ) is now the magnification probability within the
cluster virial radius (in the source plane as before). In the limit of
constant magnification inside the virial radius, we get Nobs = N/μ.
Furthermore, if there is no lower limit to the flux integral Sobs →
0, we have 〈Nobs〉 = N/〈μ〉, that is, we observe fewer galaxies in
the line of sight of clusters. Note that our result for Nobs appears to
differ from some of the literature (e.g. Schneider et al. 2006), but the
difference is that we use the same solid angle for the observed and
unlensed case, because the only solid angle in town is the observed
size of the galaxy cluster.

The intrinsic mean flux and mean square flux within the cluster
solid angle ��vir are Svir = ��vir S and S2

vir = ��vir S2,
respectively. With lensing, we have

〈Sobs〉vir = ��vir〈Sobs〉 = Svir , (20)

〈S2
obs〉vir = ��vir〈S2

obs〉 = 〈μ2〉
〈μ〉 S

2
vir. (21)

Consider a cluster of observed radius 1 arcmin. The average flux
from background galaxies crossing this 1-arcmin cluster is the same
with or without lensing: with lensing, the background galaxies are
brighter but less numerous and the two effects exactly compensate.
Thus, lensing does not create a bias by increasing the expected flux
within the cluster solid angle relative to a random 1-arcmin patch
of the sky, as long as there is no flux cut-off.

For SZ surveys, the mean flux from background galaxies is sub-
tracted in obtaining the SZ decrement or increment (depending on
the observed frequency), but there is additional scatter due to the
Poisson error from shot noise fluctuations (a given cluster having
more or less galaxies than the expected average). This effect is im-
portant for SZ surveys, where high-z submillimetre galaxies can
contaminate the SZ signal (Knox, Holder & Church 2004; White &
Majumdar 2004; Lima et al. 2010a). Lensing enhances this source
of scatter significantly, as the factor 〈μ2〉/〈μ〉 for galaxy clusters
can be quite large – see Fig. 1. The estimates shown are based on an
analytical model of cluster haloes that uses Navarro–Frenk–White
profiles and elliptical isopotential contours (Lima et al. 2010a).
Our estimates are conservative in that we include cluster ellipticity
but not substructure. Fig. 2 also indicates the error made in ap-
proximating moments of the flux by using the mean magnification
(e.g. Refregier & Loeb 1997).

Notice that if we attempt to remove galaxies above some flux
Scut, which could be removed if they were resolved, we introduce a
difference between the observed and intrinsic average flux through
the cluster, that is, 〈Sobs〉 
= S. In that case, the mean CMB flux is
not equally contaminated by background galaxies and subtracting
this mean flux from the cluster flux does not cancel the galaxy con-
tribution on average. Therefore, removing bright galaxies from the
sample biases the SZ signal. An observationally relevant situation
arises, if a flux cut-off is used to identify sources – thus altering both
the number counts and flux contribution from unresolved sources
(e.g. Refregier & Loeb 1997).

Figure 1. Left-hand panel: Mean magnification 〈μ〉 and mean squared 〈μ2〉 measured within clusters at redshift z = 0.5 as a function of the cluster mass. The
upper panel averages within the virial radius of the cluster, while the lower panel uses a smaller radius within which the overdensity is 2500 times the critical
density. In X-ray and SZ analyses, different choices for the cluster radius are made, which typically lie within these two. Right-hand panel: Contamination of
submillimetre galaxies to the SZ flux within the virial radius of clusters of virial mass Mvir = 1014.6–1015 h−1 M�. The solid line shows the intrinsic SZ flux

�SSZ
ν . The light-shaded region delineates the 1σ region from contamination of submillimetre galaxies from Poisson noise in their counts, that is, σ 2

gal = S2
vir.

The dark-shaded region accounts for lensing magnification, which further enhances the noise by 〈μ2〉/〈μ〉 (cf. equation 22).
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Figure 2. Left-hand panel: Intrinsic and lensed galaxy number density dn/d lnS using different lensing prescriptions. The true underlying distribution is
assumed to be of a Schechter type, which is then lensed by intervening haloes. The solid (green) curves use equation (9); the two alternatives shown (and
described in Section 5.2) can change the predicted counts by an order of magnitude or more at the high-luminosity end. Right-hand panel: As above, but for
different source redshifts.

5 ILLUSTRATIVE NUMBER–MAG NITUDE
R E L AT I O N S

5.1 Power law

It is common in the magnification bias literature to consider the
case of a local power law in the logarithm of the number counts.
We then obtain for the observed cumulative number density

n(> S) ∝ S−α → nobs(> Sobs) = 〈μα〉
〈μ〉 n(> Sobs). (22)

Working with apparent magnitudes instead of fluxes, this gives
(using m = −2.5 log10 S + constant)

n(< m) ∝ ms → nobs(< mobs) = 〈μ2.5s〉
〈μ〉 n(< mobs). (23)

Note that the use of the power law for n(>S) allows us to simplify
the integral over μ. The above equation agrees with the standard
expression (e.g. Broadhurst, Taylor & Peacock 1995): nobs(< m) =
μ2.5s−1n(< m) for the case of constant magnification. For variable
magnification, one needs to evaluate the averages as above. If one
simply uses the factor 〈μ2.5s−1〉 behind a galaxy cluster instead of
equation (23), then an error in the number counts can result. The
error ranges from 3 per cent for a cluster of mass 1014 h−1 M� to
6 per cent for a cluster of mass 1015 h−1 M�. This would result in
an equivalent bias in the inferred cluster mass. Mass estimates that
rely on number counts may be feasible for large samples of clusters
from future surveys.

To compare the results from equation (9) with other formulae used
in the literature, consider first the naive generalization to variable
magnification (which is correct in the image plane):

Prescription A :
dnobs(Sobs)

dSobs
=

∫
dμ

P (μ)

μ2

dn

dS

(
Sobs

μ

)
. (24)

This underestimates the lensing effect. Alternatively, some authors
drop the μ factors altogether (Paciga, Scott & Chapin 2009), which

overestimates the lensing effect:

Prescription B :
dnobs(Sobs)

dSobs
=

∫
dμP (μ)

dn

dS

(
Sobs

μ

)
. (25)

5.2 Schechter luminosity function

A single power-law number–magnitude relation is lensed into an
observed relation with same power law (but different amplitude).
However, if the intrinsic dn/dS is not a power law, then lensing
changes the shape of the distribution as well. High-magnification
events shift galaxies with low fluxes to high fluxes – hence, if dn/dS
falls sharply at high S, magnification can significantly enhance the
counts at these fluxes.

We illustrate the effect of magnification for realistic galaxy pop-
ulations by considering a Schechter function (Schechter 1976):

dn(S)

dS
∝

(
S

S∗

)α

e−S/S∗
. (26)

For galaxies observed in a narrow redshift interval, such a dn/dS
relation can arise due to the Schechter luminosity function of the
population.

In Fig. 2, we show the intrinsic distribution and the lensed ver-
sions according to the two incorrect prescriptions (Prescriptions A
and B) mentioned above, as well as the correct prescription of equa-
tion (9). We assume all galaxies are at redshift zs = 2.1 and use a
P(μ) obtained from N-body simulations by Hilbert et al. (2007).
We also choose α = 0 in the Schechter function. We plot dn/d ln S
to relate more easily to the observational literature, which shows
number per unit absolute magnitude. Our results in Fig. 2 may be
matched with high-z luminosity functions by replacing S/S∗ with
L/L∗.

The lensing contribution (correctly included in the green curves)
is large for the Schechter function at the bright end (S/S∗ > 10).
Thus, for a population of galaxies with a Schechter luminosity
function, the observed dn/dS will not retain the exponential tail of
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the Schechter function. Using equation (9) and approximating the
Schechter function as having a sharp cut-off at S = S∗, it is easy to
see that the integration over μ generates a power law in dn/d ln S,
whose slope is −2, due to the asymptotic slope P(μ) ∝ μ−3. The
green solid curve approaches this slope beyond S = 10 S∗.

Choosing a lower (higher) value of α slightly enhances (sup-
presses) the lensing contribution at fixed S/S∗. Fig. 2 also shows that
the difference between the three prescriptions is large at the bright
end for the Schechter function. The dn/dS in Fig. 2 is normalized
so that the distribution matches submillimetre galaxies measured
by the Balloon-borne Large Aperture Telescope (BLAST) (Devlin
et al. 2009) at 500 μm. In a separate study, we show that if the
submillimetre galaxies lie at z ∼ 2–3, then lensing of an intrinsic
Schechter function can explain the observations from BLAST and
other surveys (Lima et al. 2010b).

Similar comparisons to luminosity function observations in the
visible bands can be carried out: it is especially important to include
lensing in the comparison of low-z data with data at z � 1, since the
magnification contribution is significant only at high z.

6 D ISCUSSION

We have derived expressions for computing average quantities in
the observed image plane, given a distribution P(μ) of magnifi-
cations in the source plane. Our results, summarized in equations
(9)–(12), generalize expressions found in the lensing literature for
the case of constant magnifications. We illustrated the effect of lens-
ing on steep number counts of background galaxies and on boosting
the contamination that high-redshift galaxies induce in cluster SZ
fluxes. The formulae we have presented may be useful for studying
the intrinsic properties of high-redshift galaxies and for current and
upcoming cluster surveys.

The quantitative estimates presented here for galaxy clusters are
based on analytical models of haloes. While these incorporate re-
alistic density profiles as well as halo ellipticity, they miss the full
complexity of halo bimodality (due to major mergers) and substruc-
ture. These features only enhance the effects of averaging we have
considered.

Finally, we note that the lensing effects discussed here do
not impact the predicted (magnification induced) cross-correlation

of number counts measured in different redshift bins (Moessner
& Jain 1998). Such cross-correlations depend on the two-point
cross-correlations of magnification with the galaxy density. Thus,
measurements of magnification bias from galaxy–quasar cross-
correlations or of its contamination on high-z cross-correlations due
to the Integrated Sachs-Wolfe effect are unaffected by the spatial
averaging issues discussed here.

AC K N OW L E D G M E N T S

We thank Anna Cabre, Yan-Chuan Cai, Mark Devlin, Mike Jarvis
and Ravi Sheth for helpful discussions, and Stefan Hilbert for shar-
ing his simulation results. We especially thank Gary Bernstein and
Peter Schneider for sharing their insights and knowledge of the his-
tory of the field. This work was supported in part by an NSF-PIRE
grant and AST-0607667.

REFERENCES

Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291
Broadhurst T., Taylor A., Peacock J., 1995, ApJ, 438, 49
Canizares C. R., 1981, Nat, 291, 620
Canizares C. R., 1982, ApJ, 263, 508
Devlin M. J. et al., 2009, Nat, 458, 737
Hilbert S., White S. D. M., Hartlap J., Schneider P., 2007, MNRAS, 382,

121
Jain B., Seljak U., White S., 2000, ApJ, 530, 547
Knox L., Holder G. P., Church S. E., 2004, ApJ, 612, 96
Lima M., Jain B., Devlin M., 2010a, MNRAS, 406, 2352
Lima M., Jain B., Devlin M., Aguirre J., 2010b, ApJ, 717, L31
Moessner R., Jain B., 1998, MNRAS, 294, L18
Paciga G., Scott D., Chapin E. L., 2009, MNRAS, 395, 1153
Peacock J. A., 1982, MNRAS, 199, 987
Refregier A., Loeb A., 1997, ApJ, 478, 476
Schechter P., 1976, ApJ, 203, 297
Schneider P., Kochanek C. S., Wambsganss J., 2006, in Meylan G., Jetzer

P., North P., eds, Saas-Free Advanced Course, Vol. 33, Gravitational
Lensing: Strong, Weak and Micro. Springer-Verlag, Berlin, p. 59

Takada M., Hamana T., 2003, MNRAS, 346, 949
White M., Majundar S., 2004, ApJ, 602, 565

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2011 The Authors
Monthly Notices of the Royal Astronomical Society C© 2011 RAS, MNRAS 411, 2113–2117


