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ABSTRACT

Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure observables for both
current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample
variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can
similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examine the accuracy of
two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate respectively
at the 15% and 30-35% level for covariances of counts in the same redshift bin. We then develop a harmonic expansion
formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of
current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat
sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which
allows fast and easy runs of covariance predictions when the survey mask is modified. We apply our method to a mask
broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift
bins are anti-correlated. We also examine the case of data removal from holes due e.g. to bright stars, quality cuts
or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only
rescaling its amplitude by the effective survey area. These advances make possible for current and future galaxy surveys
the computation of cosmology-dependent theoretical covariances, which can improve parameter constraints compared
to methods that fix the covariance from data or simulations.
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1. Introduction

The large scale structure of the universe results from the
growth of local density perturbations induced by gravita-
tional collapse within an expanding background (e.g. Pee-
bles 1980). The multi-point correlations and associated
spectra that characterize this structure can be measured
in real data and combined with theory predictions, in or-
der to constrain cosmological models – including gravity
theories and relative amounts of dark matter and dark en-
ergy (Astier et al. 2006; Percival et al. 2010; Riess et al.
2009; Hildebrandt et al. 2016; Beutler et al. 2017; Hinton
et al. 2017). However, likelihood methods of parameter in-
ference also require reliable estimates of the covariances
associated to structure observables. Estimates of the co-
variances can be obtained from the actual data via meth-
ods such as jackknife and bootstrap; from simulations and
Monte Carlo realizations; and from theoretical predictions
which account for the known observational effects (Dodel-
son & Schneider 2013; Giannantonio et al. 2016; Crocce
et al. 2016; O’Connell et al. 2016; Singh et al. 2016; Shi-
rasaki et al. 2016; Blot et al. 2016; Escoffier et al. 2016;
Pearson & Samushia 2016; Camacho et al. in prep.). In this
work we focus on the latter approach.

? fabien.lacasa@unige.ch

Within the so-called halo model paradigm (Cooray &
Sheth 2002), large scale structure can be characterized by
the statistical properties of the universe building blocks, i.e.
dark matter halos. These halos are characterized by their
abundance, bias and profiles, all of which can be studied
from dark matter N-body simulations and also from high-
quality data sets. As galaxy clusters develop within dark
matter halos, they trace the highest density peaks. Their
number counts and covariances are very sensitive probes of
structure growth and expansion of the Universe (Lima &
Hu 2004, 2005, 2007; Schmidt et al. 2009; Aguena & Lima
2016). A number of past and current surveys have detected
clusters in multiple wavelengths with hopes to use them
for cosmological purposes (Miller et al. 2005; Koester et al.
2007; Soares-Santos et al. 2011; Dietrich et al. 2014; Rykoff
et al. 2014; Bleem et al. 2015; Planck Collaboration et al.
2016; Rykoff et al. 2016; Bayliss et al. 2016).

As we consider scales close to the survey maximum size,
the number of modes available decrease significantly, which
represents an intrinsic source of uncertainty for the inferred
structure properties. The sample covariance quantifies these
uncertainties and may have contributions from scales much
larger than the survey itself, in which case we refer to it
as super-sample covariance (SSC), whose effects have been
studied recently in multiple contexts (e.g Takada & Hu
2013; Li et al. 2014a,b; Takahashi et al. 2014; Li et al. 2016;
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Shirasaki et al. 2016; Hu et al. 2016), and has been shown to
be particularly important for probe combinations as it cou-
ples observables together (Takada & Bridle 2007; Takada
& Spergel 2014; Krause & Eifler 2016; Lacasa & Rosenfeld
2016). Within a local patch, large scale modes change the
effective average density, which can differ significantly and
unpredictably from the true background density, affecting
the inferred correlations. This effect becomes more impor-
tant for small survey areas, but is relevant even for obser-
vations of the full sky due to super-horizon modes. In fact,
SSC may be the dominant source of errors on Jackknife
covariance estimations (Shirasaki et al. 2016).

Finally, the survey geometry or footprint as well as its
selection function – characterized e.g. by masks and depth
maps – also affect the estimation of correlations and covari-
ances (Takahashi et al. 2014). Not only the geometry and
selection must be known to good precision, but their prop-
erties must be properly propagated into the measured and
predicted correlations and covariances. Some predictions
can only be directly made under certain approximations,
e.g. for full sky calculations, while for the more realistic
case of partial sky coverage, further complicating assump-
tions need to be made. As we attempt to extract maximum
information from observations, we may end up with a com-
plicated survey mask containing holes (e.g. due to saturated
pixels, asteroids, contamination from stars, or simply pixels
that do not satisfy a depth criterion). All these effects must
be accounted for in a proper cosmological analysis.

In this article, we study the effect of partial sky coverage
and arbitrary masks in the estimation of the super-sample
covariance of cluster counts. We propose a method to esti-
mate this covariance efficiently for an arbitrary mask, and
compare this approach to a number of approximated calcu-
lations in the literature. We show that our general calcula-
tion reduces to the approximated computations in the ap-
propriate limits, but differ from them in general. Although
beyond the scope of this work, we expect our theoretical es-
timation can be compared to other methods of estimating
the covariance which also attempt to account for the survey
geometry and mask effects, such as Jackknife methods or
simulation realizations. The main advantage of our method
though is that it allows for the covariance to be computed
as a function of cosmology at each step of a monte carlo
markov chain, therefore avoiding problems e.g. from fix-
ing the covariance at an incorrect cosmology. Allowing for
the variation of the covariance with cosmological and nui-
sance parameters allows e.g. for self-calibration of cluster
observable-mass distribution in general cosmological anal-
yses of cluster samples (Lima & Hu 2005).

This article is organised as follows. In Sect. 2, we intro-
duce the SSC formalism for SSC full equations in the case
of cluster counts, and consider the limits of flat sky (small
angles) and full sky, providing some comparisons for the
covariance kernels in these approximations. In Sect. 3 we
consider the flat sky limit under different approximations
which have been proposed in the literature for computing
the SCC, and compare them to the full exact computation.
In Sect. 4, we propose a method to numerically compute
SSC in the case of partial sky coverage with an arbitrary
survey mask. In Sect. 5 we present our results, applying the
method to the case of a geometry similar to that of Dark
Energy Survey (DES), discussing the mask effects, and re-
covering the flat sky limit. Finally, in Sect. 6 we present our
conclusions and perpectives.

In all numerical computations, we take a cosmology for
a flat ΛCDM universe with parameter values h = 0.67,
Ωbh

2 = 0.022, Ωch
2 = 0.12, w = −1, nS = 0.96 ,

σ8 = 0.83. Cluster counts are computed in two bins of
redshift in the range z ∈ [0.4, 0.6] with ∆z = 0.1, and
four bins of mass in the range log[M/(h−1M�)] ∈ [14, 16]
with ∆ log[M/(h−1M�)] = 0.5. The halo mass function
is from a fit to simulations from Tinker et al. (2008), the
halo bias is from Tinker et al. (2010) and the linear mat-
ter power spectrum is from the transfer function by Eisen-
stein & Hu (1998). We set the following notational con-
ventions: r(z) is the comoving distance i.e. dr = dz/H(z)
with H(z) the Hubble parameter, and dV = r2dr is the
comoving volume element per steradian. We use shortcuts
such as dX12 = dX1 dX2 and P (k|z12) = P (k|z1, z2) =
G(z1)G(z2)P (k) with G(z) the linear growth function. Of-
ten the limits of redshift/mass integrals are implicitly those
of the redshift/mass bin considered.

2. Super-sample covariance

Super-sample covariance (SSC) is a source of uncertainties
for large scale structure (LSS) observables, coming from
modes of size larger than the survey. The effect of these
large scale modes on structure comes from the fact that the
effective or local matter density ρ̄eff

m (z) averaged within the
survey can be different from the true background density
ρ̄m(z) averaged over the whole universe or an ensemble of
universes:

ρ̄eff
m (z) = ρ̄m(z)[1 + δ′b(z)] , (1)

where δ′b(z) is a background density perturbation induced
by large scale modes. Defining the density contrasts

δm(x) =
ρ(x)− ρ̄m

ρ̄m
and δeff

m (x) =
ρ(x)− ρ̄eff

m

ρ̄eff
m

, (2)

the ensemble average 〈δm(x)〉 = 0 whereas the spatial av-
erage 〈δeff

m (x)〉 = δ′b/(1 + δ′b) ≡ δb ≈ δ′b.
We split the survey window function W (x) into radial

W (z) and angular W (n̂) pieces, i.e. W (x) = W (z)W (n̂).
The radial part simply specifies the redshift binning and
will often be suppressed in our description below, where it
will be effectively included within integration limits. On the
other hand, the angular window W (n̂) is the main object
whose effect on the covariances we want to consider. In prin-
ciple W (n̂) may depend on redshift as well. In fact, this is
very often the case for surveys with significant depth varia-
tions across the sky. For simplicity, we will keep the angular
window only as a function of the angular vector, though the
formalism can be easily generalized (see Appendix A).

If the survey angular window W (n̂) subtends a solid
angle ΩS in the sky, and we denote the position vector
x = r(z)n̂, the background perturbation δb is given by

δb(z) =
1

ΩS

∫
d2n̂W (n̂) δm(r(z)n̂, z) . (3)

As a result, all LSS observables will respond to such
change of background density, becoming correlated. Explic-
itly, the SSC term of the cross-covariance between two ob-
servables O1 and O2 is given by (e.g. Lacasa & Rosenfeld
2016) :

CovSSC(O1,O2) =

∫
dV12

∂o1

∂δb

∂o2

∂δb
σ2(z1, z2) , (4)
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where oi is the density of observable Oi (per comoving vol-
ume dV ), ∂oi/∂δb is its reaction to the change in back-
ground δb, and σ2(z1, z2) is the covariance of δb :

σ2(z1, z2) = 〈δb(z1) δb(z2)〉 =

∫
d3k

(2π)3
W̃ 2(k) P (k|z12) ,

(5)

with W̃ the Fourier transform of the survey window func-
tion.

In this article, we will be mostly interested in the case
of cluster number counts Ncl(iM , iz) per steradian within
bins of mass iM and bins of redshift iz 1,

Ncl(iM , iz) =

∫
z∈bin(iz)

dV

∫
M∈bin(iM )

dM
dnh(z,M)

dM
, (6)

where dnh/dM is the halo mass-function. The super-sample
covariance of these counts is traditionally denoted simply as
sample covariance in the cluster literature. It is important
to notice though that super-horizon modes affect even full
sky surveys and must always be accounted for. The SSC for
clusters counts is given by (e.g. Lacasa & Rosenfeld 2016) :

CovSSC(Ncl(iM , iz), Ncl(jM , jz)) =∫
dV12

∂nh
∂δb

(iM , z1)
∂nh
∂δb

(iM , z2) σ2(z1, z2) ,

(7)

where the response of the halo number density nh =
dNcl/dV to a change of background density is given by the
number-weighted halo-bias averaged within the bin (e.g.
Schmidt et al. 2013) :

∂nh
∂δb

(iM , z) =

∫
M∈bin(iM )

dM
dnh
dM

b(M, z) , (8)

where b(M, z) is the (first order) halo bias.
Most of the elements for the computation of the co-

variance pose no particular numerical problem. A notable
exception is σ2(z1, z2), as it depends on the survey geom-
etry. Numerically tractable formulae are known only for a
few cases with simple geometries. First, for the case of full
sky, we have (Lacasa & Rosenfeld 2016) :

σ2
fullsky(z1, z2) =

1

2π2

∫
k2 dk j0(kr1) j0(kr2)Pm(k|z12) ,

(9)

where ri = r(zi). Second, an expression for σ2(z1, z2) is also
known in the flat sky limit (e.g. Hu & Kravtsov 2003; Lima
& Hu 2007; Aguena & Lima 2016) :

σ2
flatsky(z1, z2) =

1

2π2

∫
k⊥ dk⊥ 4

J1(k⊥θSr1)

k⊥θSr1

J1(k⊥θSr2)

k⊥θSr2

×
∫

dk‖ cos
[
k‖(r1 − r2)

]
P (k|z12) ,

(10)

1 Throughout this articleNcl is the number of clusters per stera-
dian. For application to a survey, Ncl and its covariance may be
re-scaled by the observed area.

for a cylindrical window function of radius θS delineating a
survey solid angle ΩS = 2π(1−cos θS) ≈ πθ2

S , and the wave-
vector k = (k‖, k⊥) is split into its components parallel and
perpendicular to the line of sight, with k2 = k2

⊥ + k2
‖.

Fig. 1 shows the comparison of σ2 resulting from the two
expressions above for an angular window of radius θS = 5
deg. The full sky covariance was re-scaled by a factor f−1

SKY

– where fSKY = ΩS/4π and ΩS = πθ2
S – an approximation

usually made for covariances in partial sky. We see that

0.46 0.48 0.50 0.52 0.54

z2

0.000

0.002

0.004

0.006

0.008

σ
2
(z

1
=

0
.5
,z

2
)

flatsky
fullsky/fsky

Fig. 1. Comparison of σ2(z1, z2) for z1 = 0.5 in different cases.
In blue the flat sky formula Eq. 10 for a survey angular radius
θS = 5 deg. In green the full sky formula Eq. 9, rescaled by a
factor 1/fSKY.

both covariances share the behaviour of peaking at z1 = z2

and decreasing to zero as |z1−z2| increases2. Regarding the
amplitudes, we see that re-scaling the full sky covariance by
the usual 1/fSKY factor underpredicts the covariance by a
factor ∼ 3.4 in this case3. Even when re-scaling by hand
the covariances to the same peak amplitude, we find that
their shapes are broadly similar but differ in details. The
full sky covariance is more strongly peaked at the center,
then decreases and crosses zero, reaching a negative minima
of height ∼ 7% of its peak, before slowly asymptoting zero.
By contrast, the flat sky covariance is a bit broader in its
positive part, but its negative minimum is only∼ 0.8% of its
peak, and it asymptotes faster to zero. This clearly indicates
that super-sample covariance is non-trivially related to sky
coverage, and a more general approach is required for its
accurate computation.

3. Comparison of SSC approximations

The full equation Eq. 7 for SSC can be numerically expen-
sive, as it requires a double redshift integral. Furthermore,
for each pair of redshift, a double (k⊥, k‖) integral is re-
quired (e.g. in the flat sky case). To tame down this bur-
den, several approximations have been devised in the lit-
erature. Below we consider two approximations in the flat
sky regime.

2 By eye, both functions seem symmetric around z1 = z2, but
in detail this is not true.
3 An artificial factor 1/f2

SKY would not fare better, this time
overpredicting the covariance.
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First, in Eq. 7 we can assume that ∂nh/∂δb varies slowly
with within the bins, such that it can be approximated by
its value at the bin centroid and taken out of the integral. In
fact this may be a good approximation for sufficiently nar-
row bins. In this case, Eq. 7 takes the form (Hu & Kravtsov
2003)

CovSSC(Ncl(iM , iz), Ncl(jM , jz)) ≈
Ncl(iM , iz) b(iM , iz) Ncl(jM , jz) b(jM , jz)Siz,jz ,

(11)

where

Siz,jz =

∫
dV12

V12
σ2(z1, z2) , (12)

and the normalized number-weighted halo bias within the
bin is

b(iM , iz) =
1

nh

∫
M∈bin(iM )

dM
dnh
dM

b(M, z̄i) , (13)

nh =

∫
M∈bin(iM )

dM
dnh
dM

. (14)

In fact, b(iM , iz) is the cluster bias averaged in the
mass bin, and taken at the center of the redshift bin
iz = [zi, zi+1], i.e. z̄i = (zi + zi+1)/2. This implicitly as-
sumes that b(M, z) varies slowly with z within the bin iz.
For a cylindrical window function of height δr in the flat
sky case, the sample variance matrix Siz,jz takes the form
(Hu & Kravtsov 2003; Lima & Hu 2007; Aguena & Lima
2016)

Siz,jz =
1

2π2

∫
k⊥ dk⊥ 4

J1(k⊥θSr1)

k⊥θSr1

J1(k⊥θSr2)

k⊥θSr2

×
∫

dk‖ j0

(
k‖δr1

2

)
j0

(
k‖δr2

2

)
cos
[
k‖(r1 − r2)

]
P (k|z12) ,

(15)

where the power spectrum P (k|z12) is evaluated at the cen-
ter of the respective redshift bins. A nice feature of this ap-
proximation is that it removes the need to compute a dou-
ble redshift integral. Furthermore the double integral over
(k⊥, k‖) only needs to be computed n2

z times (where nz is
the number of redshift bins), instead of all redshift pairs
(z1, z2) needed to compute the redshift integral otherwise.
This speeds up considerably the computation of SSC. We
will call this approximation the Sij method.

Second, another approximation used (e.g. Krause & Ei-
fler 2016) is that σ2(z1, z2) is a Dirac delta function at
z1 = z2, so that the double redshift integral collapses into
a single integral :

CovSSC(Ncl(iM , iz), Ncl(jM , jz)) ≈

δiz,jz

∫
dV r2(z)

∂nh
∂δb

(iM , z)
∂nh
∂δb

(jM , z)σb(ΩS , z) ,

(16)

where, following notation from Krause & Eifler (2016), we
have

σb(ΩS , z) =

∫
k⊥ dk⊥

2π
P (k⊥, z)

[
2J1(k⊥r(z)θS)

k⊥r(z)θS

]2

, (17)

where P (k⊥, z) = P (k = k⊥, z), and we note that the k‖
integral has disappeared, and that σb has units of Mpc/h.

The assumption behind this approximation is that the
3D window functionW (x) is much wider in the radial direc-
tion than in the transverse one. Thus super-survey modes
have k‖ � k⊥, and P (k) can be taken as approximately
constant within the k‖ integral of Eq. 10. We thus expect
the approximation to fare better for wide redshift bins and
small angles. By limiting the computation to equal red-
shift bins iz = jz, and reducing the multiple integrals to a
single redshift and a single wave-vector k⊥ integral, the ap-
proximation speeds up considerably the SSC computation.
Hereafter, we will call this approximation the KE method.

We implemented numerically all three SSC methods: 1)
full computation from Eqs. 4 and 10, 2) Sij approximation
and 3) KE approximation. Comparing the covariances at
auto-redshifts, iz = jz, we found that both the Sij and KE
approximations underpredict the amplitude of the covari-
ance, respectively by 30−35% and by ∼ 15%. The fact that
Sij underpredicts the covariance is conform to our intuition;
indeed, by taking values at the center of the redshift bins,
the approximation neglects the fact that the mass func-
tion and the matter power spectrum both grow with time,
which makes their integral larger4. We checked that the Sij
method and full computation are in much better agreement
for smaller redshift bins, and indeed it can be seen analyt-
ically that they reduce to each other in the limit ∆z → 0.

Concerning cross-redshift covariances, the full compu-
tation gives a positive correlation between our two redshift
bins, reaching ∼ 13% at maximum. On the other hand we
found that the Sij approximation predicts anti-correlation
between the bins, reaching at maximum −16%n while the
KE approximation predicts, by construction, zero correla-
tion. We checked that the Sij method performs better as the
redshift bin width decreases. For instance at ∆z = 0.01, the
agreement with the full computation is very good.

In Fig. 2, we show two correlation matrices for cluster
counts obtained from each of the three SSC computations:
on top is the correlation corresponding to the total covari-
ance (i.e. SSC + shot-noise), and at the bottom the corre-
lation of the SSC term only. The data points are ordered
with increasing mass then increasing redshift, i.e. 0 refers
to the lowest mass bin (14 < logM < 14.5) in the first
redshift bin (0.4 < z < 0.5), 3 refers to the highest mass
bin (15.5 < logM < 16) still in the first redshift bin, and
then we go to the second redshift bin (0.5 < z < 0.6).

For the total covariance, the matrices are plotted with
a common color code from black=0 to white=1. This lets
appreciate the amplitude of the predicted SSC, compared
to the shot-noise (which is proportional to Ncl, and as such
independent of the SSC computation). We can see on these
plots the fact that, compared to the full computation, both
the Sij and KE methods underpredict the covariance. The
cross-redshift covariance is however not visible on these
plots, and is better seen in the bottom matrices, where the
color code goes negative and we see that the Sij method pre-
dicts a too high anti-correlation between the redshift bins,
while the KE method predicts zero correlation and the full
computation finds a positive correlation. We can also see on
these bottom plots that the Sij method predicts 100% SSC

4 e.g. 1/3 =
∫ 1

0
x2dx > 1/2 ∗

∫ 1

0
xdx = 1/4
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Fig. 2. Comparison of the cluster counts correlation matrix for different SSC computations, for a survey with angular radius
θS = 5 deg. The SSC matrix is displayed in 2 blocks for the redshift bins, and each block has 4 entries for the logarithmic mass
bins. Top: correlation matrix of the total covariance (SSC+shot-noise) ; Bottom: correlation matrix of the SSC term only. Left:
full numerical computation. Center: Si,j approximation ; note that it has been cropped to [0,1], and otherwise goes negative (see
text for details). Right: KE approximation. The color coding is such that white means 100%. Notice that for the top row the color
code is from 0 to 1 while it goes negative in the bottom row (see text for details).

correlation between mass bins5, while the full computation
finds that the correlation goes down to 96%.

As a conclusion of this section, we see that the full com-
putation is necessary to faithfully predict the SSC covari-
ance matrix in the case ∆z = 0.1. In fact, this is a rep-
resentative binning for current photometric galaxy surveys
whose present photo-z errors are of this order (e.g. Sánchez
et al. 2014).

4. Super sample covariance for partial sky coverage

In this section, we will assume for simplicity that the sur-
vey mask is independent of redshift, as we in fact already
did implicitly in Eq. 3. It is however straightforward to
generalise the formalism to a redshift-dependent mask (see
Appendix A).

4.1. Formal derivation

We want to compute the covariance of the background
mode

σ2(z1, z2) = 〈δb(z1) δb(z2)〉 . (18)

Given that the mask has zero value outside the survey,
and given the normalisation of spherical harmonics such
that Y00 = 1/

√
4π, the background mode of the survey is

5 these can be seen already analytically from Eq. 11

related to the monopole of the masked matter density as :

δb(z) =
1√

4π fSKY

amasked
00 (z) , (19)

such that we have

σ2(z1, z2) =
1

4π f2
SKY

Ĉmasked
0 (z1, z2) , (20)

where Ĉmasked
0 is the angular power spectrum at ` = 0 of

the masked matter density field. From C` pseudo-spectrum
methods (e.g. Hivon et al. 2002), we know that the masked
power spectrum is related to the true spectrum via the so-
called coupling matrix, so that :

Ĉmasked
0 (z1, z2) =

∑
`

M0,` C
true
` (z1, z2) , (21)

where Ctrue
` (hereafter simply Cm

` ) is the angular spectrum
of matter density in an infinitesimal redshift shell. The cou-
pling matrix is given by :

M`1,`2 = (2`2 + 1)
∑
`3

(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)2

C`3(W ) ,

(22)

where C`(W ) is the angular power spectrum of the angular
window W (n̂). In our case, given the properties of Wigner
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symbols, this simplifies to :

M0,` =
(2`+ 1)2

4π

(
0 ` `
0 0 0

)2

C`(W ) . (23)

Furthermore we have
(

0 ` `
0 0 0

)
= (2`+ 1)−1/2 and

thus

σ2(z1, z2) =
1

Ω2
S

∑
`

(2`+ 1) C`(W ) Cm
` (z1, z2) , (24)

where ΩS = 4π fSKY and the matter angular power spec-
trum Cm

` is given by

Cm
` (z1, z2) =

2

π

∫
k2 dk j`(kr1) j`(kr2) P (k|z12) . (25)

The combined Eqs. 24 and 25 represent the main analytical
result of this article.

4.2. Limiting cases and remarks

It is interesting to examine a few limiting cases of Eqs. 24
and 25. In the full sky case, we have C`(W ) = 4π δ0,` and
fSKY = 1, and therefore thus we have

σ2(z1, z2) = σ2
fullsky(z1, z2) = Cm

0 (z1, z2) / 4π , (26)

recovering indeed Eq. 9.
In partial-sky, C0(W ) = 4π f2

SKY, so that

σ2(z1, z2) = σ2
fullsky(z1, z2)+

1

Ω2
S

∑
`≥1

(2`+1) C`(W ) Cm
` (z1, z2) ,

(27)

i.e. the full sky covariance term is the first in the sum con-
tributing to the partial-sky covariance.

If Cm
` (z1, z2) is scale-independent, i.e. Cm

` (z1, z2) =
Cm

0 (z1, z2) independently of ` (e.g. for P (k|z12)=constant,
see Sect. 5.2), we have

σ2(z1, z2) = σ2
fullsky(z1, z2)× 1

f2
SKY

∑
`

2`+ 1

4π
C`(W )

= σ2
fullsky(z1, z2)/fSKY , (28)

and therefore CovSSC = CovSSC
fullsky/fSKY, i.e. we obtain the

usual fSKY approximation to partial sky covariance. Con-
versely the reverse is also true: if the fSKY approximation
holds for any mask, then Cm

` (z1, z2) is constant. Given that
for viable cosmological models Cm

` (z1, z2) is not constant,
this shows that SSC is a non-trivial source of covariance
that cannot be treated by classical approximations.

Now we notice that Eq. 24 can be rewritten as

σ2(z1, z2) =
1

f2
SKY

∑
`

2`+ 1

4π
C`(W ) σ2

` (z1, z2) , (29)

with

σ2
` (z1, z2) =

Cm
` (z1, z2)

4π

=
1

2π2

∫
k2 dk j`(kr1) j`(kr2) P (k|z12) , (30)

so that in full sky σ2(z1, z2) = σ2
0(z1, z2). Applying this to

the SSC covariance of two observables, e.g. number counts,
we have

CovSSC(O1,O2) =
1

f2
SKY

∑
`

2`+ 1

4π
C`(W ) CovSSC

` (O1,O2) ,

(31)
where

CovSSC
` (O1,O2) =

∫
dV12

∂o1

∂δb

∂o1

∂δb
σ2
` (z1, z2) (32)

=
1

4π

∫
dV12

∂o1

∂δb

∂o1

∂δb
Cm
` (z1, z2) .

Therefore the combined Eqs. 29, 30, 31, 32, along with
the window spectrum C`(W ), allow for the computation of
the SSC in partial sky for a general window and binning
choice.

Numerically, we can pre-compute and tabulate
CovSSC

` (O1,O2), and then just change C`(W ) as the
mask varies. This enables easier studies of the mask effect
such as optimisations of survey strategy (Takahashi et al.
2014), forecasts for improvements as a survey area grows,
and comparisons between different surveys. Conversely,
for a fixed survey with a well defined mask, we can
pre-compute C`(W ) for the specific survey mask, and
change CovSSC

` (O1,O2) as a function of cosmology within
likelihood cosmological analyses, taking full account of
geometry, mask, selection and cosmological dependencies in
the covariances, and therefore deriving reliable parameter
uncertainties.

4.3. Implementation

When estimating the SSC from Eq. 31, one numerical diffi-
culty is the evaluation of the integral in Eq. 30, given that
the Bessel functions highly oscillate with slow damping as
kri →∞.

For the first multipoles, we may express the Bessel func-
tions in terms of sine and cosine. Through trigonometrical
identities, the integrals with products of Bessel function can
thus be expressed as a sum of Fourier transforms. Deriva-
tions and expressions for the first 3 multipoles are given
in Appendix C. For illustrative purposes we give below the
expression for ` = 0

Cm
0 (z1, z2) =

Ic0(r1 − r2)− Ic0(r1 + r2)

2
, (33)

where

Ic0(r) =
2

π

∫
k2 dk cos(kr) P (k|z12)/k2 (34)

is a continuous cosine transform which can be efficiently ap-
proximated numerically with a discrete Fast Fourier Trans-
form. However, as argued in Appendix C, this method be-
comes too cumbersome at high ` and may also become nu-
merically unstable. We could carry it out only for ` = 0, 1, 2.

As an alternative, we decided not to evaluate σ2(z1, z2),
but instead to switch the order of the integrals over k and
z, in order to compute directly the covariance as :

CovSSC
` (Ncl(iM , iz), Ncl(jM , jz)) =

1

2π2

∫
k2dk P (k|z = 0)

×Ψnh

` (k|iM , iz) Ψnh

` (k|jM , jz) ,
(35)
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Fig. 3. Ψ
nh
` (k|iM , iz) as a function of k, for the representative case iM = iz = 0 (logM = 14 − 14.5, z = 0.4 − 0.5). Left: at the

lowest multipole ` = 0. Center: at ` = 10. Right: at ` = 100.

where the kernel Ψnh

` is given by

Ψnh

` (k|iM , iz) ≡
∫
z∈bin(iz)

dV G(z)
∂nh
∂δb

(iM , z) j`(kr) . (36)

As can be seen in Fig. 3, this redshift integral effec-
tively damps out the Bessel oscillations on scales k >
kpeak + 2π/∆r(iz) where ∆r(iz) = r(zmax)− r(zmin) is the
width of the redshift bin in terms of comoving distance.
This damping makes the k integral Eq. 35 much easier to
deal with numerically compared to Eq. 25, since the inte-
grand support is now more compact. This is the method we
use for all numerical results shown hereafter in this article.

Alternatively, via the inversion of the r(z) relation and
defining a radial bin ir from iz, we note that Eq. 36 can be
expressed as a Hankel transform

Ψnh

` (k|iM , ir) =

∫
r∈bin(ir)

dr r2G(r)
∂nh
∂δb

(iM , r) j`(kr) ,

(37)

which can be efficiently evaluated using Fast Fourier trans-
form (FFT) methods such as FFTLog (e.g. Hamilton 2000;
Camacho et al. in prep.).

Although the results presented in this article consider
the case of cluster counts, the equations can be straightfor-
wardly generalized to other probes of the large scale struc-
ture, see Appendix B.

5. Results

First, as a consistency test, we checked CovSSC
`=0 against

the full sky covariance matrix computed via σ2
fullsky(z1, z2)

given in Eq. 9 (e.g. Lacasa & Rosenfeld 2016). We find
good agreement, to 0.8% precision on the auto-redshift co-
variance, and 7% precision on the cross-redshift covariance.

Second, we show in Fig. 4 the general results
for CovSSC

` (Ncl(iM , iz), Ncl(jM , jz)) in two representative
cases: auto-covariance of the same redshift bin, and cross-
covariance between two redshift bins. Both plots are for
the lowest mass bin (iM = jM = 0, corresponding to
logM = 14−14.5), though the shape of the curves does not
change when taking other mass bins (even with iM 6= jM ),
only their amplitude changes.

For the auto-covariance (left plot), we see that it first
rises with `, to a maximum corresponding to the angular
scale of the matter-radiation equality (i.e. the peak of P (k))

at that redshift, and then decreases monotonically. This be-
haviour is conform to our expectations, since the scale de-
pendence is that of a projection of the 3D power spectrum
P (k). It does mean that Cm` (z1, z2) is not constant with `,
and thus, as already discussed in Sect. 4, it means that the
fSKY approximation does not hold for super-sample covari-
ance.

For the cross-covariance (right plot), the situation is in-
teresting as we see that the covariance is first negative,
the increases, crosses zero and reaches a maximum towards
` = 25, then decreases asymptotically to zero. This means
that small surveys will have a robustly negligible covari-
ance between redshift bins (at least for this bin width
∆z = 0.1), and can thus use block-diagonal covariance ma-
trices to speed up their likelihoods estimations. However for
surveys with a large sky coverage, the cross-covariance will
be non-negligible and will depend on the survey area and
shape, becoming either positive or negative depending on
the mask. In those cases, careful estimation of the SSC is
thus critical.

5.1. Application to a realistic survey mask

In order to illustrate the SSC method in a realistic case,
we used two Healpix (Górski et al. 2005) masks visible in
Fig. 5. The first one is a binary one and is broadly sim-
ilar to the footprint of the Dark Energy Survey6 (DES),
though we warn that it does not in any way represent the
actual DES survey area, and we do not attempt to draw
any particular conclusion for that survey. This mask was
created and kindly provided to us by Flavia Sobreira. The
second mask represents a more pessimistic case, where we
considered that 15% of the survey area had to be discarded
due to bright stars, satellite trails, or other systematics. In
order to simulate this effect, we simply upgraded the mask
to high resolution (nside=4096), poked random holes in
it, then degraded back the mask to the original resolution
(nside=1024).

The angular power spectra C`(W ) for these two masks
can be seen on the left panel of Fig. 6. At low multipoles, the
two spectra differ by a constant multiplicative factor 0.852,
which is simply the ratio of the respective sky coverages. On
smaller scales appear a second component in the spectrum
of the second mask, which is a constant shot-noise due to
the random holes. However we see that this component is
very subdominant, hence we can already expect that the

6 www.darkenergysurvey.org
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Fig. 5. Masks used in the analysis. Left: simple footprint, assumed observed uniformly. Right: same but with simulated 15%
rejection of observations due to systematics (see text for details).

only difference between the covariance of the two masks
will be due to the different sky coverage.

When implementing the sum over multipoles of Eq. 31,
we find that we reached 1% convergence already at `max =
50. This means that CovSSC

` need only be computed on a
small number of multipoles for current and future surveys
with large sky coverage, rendering the partial sky formalism
developed here even more computationally efficient. Com-
paring the covariances of the two masks, we find that they
indeed only differ due to the different sky fraction, but when
renormalised by fSKY they are identical to numerical pre-
cision (0.01% in our case). The corresponding correlation
matrix is shown in the right of Fig. 6.

We see that SSC alone yields a near 100% correlation
of all cluster counts in the same redshift bin. Concerning
cross-redshifts, we find a ∼-15% anti-correlation between
the adjacent bins. The cross-covariance is thus not negligi-
ble for such a large survey.

The formalism presented in Sect. 4 is thus perfectly
adapted to the numerical prediction of super-sample covari-
ance, even in the case of a complex survey geometry. In fact
we see that such computation is indeed necessary, in order
to reproduce the non-trivial behaviour of SSC, yielding e.g.
non-negligible anti-correlation of redshift bins in the case
presented above.

5.2. Flat sky limit

One remaining question is that of the link between the par-
tial sky approach developed in Sect. 4, and the flat sky
approximation used previously in the literature and shown
in Eq. 10. The two approaches cannot be compared or re-
lated at the level of the formalism, because the (k⊥, k‖)
splitting does not apply for sufficiently large angles. How-
ever, we can compare what covariance the two formalism
predict in some limits.

First, we can compare the equations analytically in the
case of a constant spectrum P (k|z12) = cst ≡ 1. In the
partial sky formalism we have:

Cm` (z1, z2) =
2

π

∫
k2dkj`(kr1)j`(kr2)× 1 =

δ(r1 − r2)

r2
1

,

(38)

and

CovSSC
` (Ncl(iM , iz),Ncl(jM , jz)) =

δiz,jz
4π

∫
dV

∂nh
∂δb

(iM , z)
∂nh
∂δb

(jM , z)

(39)
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is independent of `. Thus the SSC is given by

CovSSC (· · · ) =
δiz,jz
4π

∫
dV

∂nh
∂δb

(iM , z)
∂nh
∂δb

(jM , z)

× 1

f2
SKY

∑
`

(2`+ 1)

4π
C`(W )︸ ︷︷ ︸

=fSKY

=
δiz,jz
ΩS

∫
dV

∂nh
∂δb

(iM , z)
∂nh
∂δb

(jM , z) , (40)

where we made the counts Ncl implicit for the sake of clar-
ity.

Now in the flat sky formalism we have:

σ2(z1, z2) =
1

2π2

∫ ∞
0

k⊥ dk⊥ 4
J1(k⊥θSr1)

k⊥θSr1

J1(k⊥θSr2)

k⊥θSr2

×
∫ ∞

0

dk‖ cos
[
k‖(r1 − r2)

]
× 1︸ ︷︷ ︸

=(2π) δ(r1−r2)/2

=
2

π
δ(r1 − r2)

1

(θr1)2

∫
x dx (J1(x)/x)

2︸ ︷︷ ︸
=1/2

=
δ(r1 − r2)

r2
1

× 1

ΩS
, (41)

where we changed variables x = k⊥θSr1 and recall ΩS ≈
πθ2

S . Inserting this into Eq. 7, we again obtain Eq. 40.
Therefore the two approaches indeed agree in the flat sky
limit for a constant spectrum.

Second, we can compare the results numerically for a
mask with small enough sky coverage. To do so, we created

a polar cap mask of radius 5 degree7. The power spectrum
of this mask is shown in Fig. 7.
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Fig. 7. Angular power spectrum of the 5 degree polar cap mask.

Compared to Fig. 6, here we see that power extends to
smaller angular scales or higher multipoles. In this case,
we found that we had to extend the sum in Eq. 31 to
higher multipoles, `max = 250, in order to reach 1% level
convergence of the covariance prediction. This stays how-
ever numerically tractable, through the observation that
the ` dependence of CovSSC

` is very smooth, especially after
`peak = 25. Thus we can sample this dependence only for
a small number of logarithmically-spaced multipoles, and
interpolate when computing the sum in Eq. 31.

7 As the power spectrum of a map is invariant under SO(3),
centering the mask on the north pole is simply a convenient
choice.
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We found good agreement between the covariance de-
rived from the partial sky formalism, and that derived
from the flat sky limit Eq. 10. This is visible e.g. in
Fig. 8 showing both auto-z covariances as a function of
α = jM + nM iM + n2

M iz, i.e. the first four points show
the covariance for iM = iz = 0 and varying jM , etc. This
order is simply a convenient one to plot this multi-variable
function.

The partial sky formalism thus successfully recovers the
flat sky approximation in the flat sky limit. Numerically, we
even found the partial sky formalism to be faster than the
full computation of Eq. 10, and only 3 times slower than
the Sij approximation Eq. 11.

6. Conclusion

Super-sample covariance, also often called sample variance,
is the dominant error for cluster counts at low cluster
masses. For instance, Hu & Cohn (2006) have shown that
even for a survey radius θ = 2.4 deg, the sample covariance
is of the same order of magnitude as shot noise for cluster
counts above logM = 14.2, though shot noise dominates
for a threshold logM = 14.4. As shot-noise decreases faster
with survey area than SSC, careful predictions of SSC be-
come crucial for current and future surveys covering ever
larger sky areas. It becomes even more crucial as these sur-
veys will be able to probe lower cluster masses, through a
higher density of galaxy detections. SSC is also crucial to
the analysis of galaxy clustering and lensing shear, where it
dominates statistical errors on small scales, and for probe
combinations as it has been shown to couple probes to-
gether (Takada & Bridle 2007; Takada & Spergel 2014; La-
casa & Rosenfeld 2016).

In the case of cluster counts covariance, we examined
theoretical SSC computations methods in the flat sky limit,
comparing two analytical approximations proposed in the
literature to a full computation. We found that both ap-
proximations underpredict the auto-z covariance by 15%
to 30-35%.

We then presented a harmonic expansion method for
efficiently and accurately computing SSC for an arbitrary

survey window function. We developed the method in the
case of cluster counts, but it can be straightforwardly gen-
eralized to other probes such as galaxy clustering or lensing
shear. Our derived expressions generalize previous full sky
and flat sky equations found in the literature, properly re-
ducing to them in the corresponding limits. We have cast
the final covariance expression from the partial sky formal-
ism in a way that allows easy modification of the survey
mask. This is particularly suitable for comparison of sur-
veys, design of survey strategy, as well as tests of data cuts
due to quality selection criteria or systematics.

When applying our partial sky formalism to a mask
broadly similar to the Dark Energy Survey footprint with
fSKY ∼ 10%, we found a ∼ −15% cross-z covariance, mean-
ing that the observables in the two redshift bins considered
are anti-correlated. Hence the covariance matrix cannot be
taken as block diagonal, as is the case for the approxima-
tion by Krause & Eifler (2016) (which is however restricted
to the flat sky limit). We also examined the possibility that
the survey area is further reduced by pixel removal due e.g.
to bright stars or systematics. We found that this does not
have important effects on the structure of the SSC matrix,
only re-scaling its amplitude by the effective survey area.

The results presented in this article thus render pos-
sible the theoretical computation of LSS covariances that
account for selection and mask effect and also vary as a
function of model parameters, as is the case in e.g. CMB
analyses. The latter parameter dependence is important in
the case of likelihood analysis of cluster constraints, as it
allows for self-calibration of the cluster observable-mass re-
lation (Lima & Hu 2005; Hu & Cohn 2006; Baxter et al.
2016). For general probes, it can also improve cosmologi-
cal parameter constraints from likelihood inference analy-
ses compared to methods that either neglect these effects
or fix the covariance from data or simulations, avoiding e.g.
the risk of fixing the covariance at a potentially incorrect
cosmology. In future work, we plan to examine the relation
between these theoretical predictions with covariances es-
timated from data itself (subsampling, jackknife and boot-
strap methods) as well as from simulations.
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Appendix A: Redshift-dependent mask

In the case where the survey angular mask W depends on
redshift (e.g. when there are significant depth variations in
the sky), the definition of the background mode Eq. 3 is
simply changed to

δb(z) =
1

ΩS(z)

∫
d2n̂ W (n̂, z) δ(rn̂, z) , (A.1)

where now the survey solid angle ΩS depends on redshift.
Then Eq. 24 for σ2(z1, z2) is changed to

σ2(z1, z2) =
1

ΩS(z1) ΩS(z2)

∑
`

{ (2`+ 1) C`[W (z1),W (z2)]

× Cm` (z1, z2) } , (A.2)

where C`[W (z1),W (z2)] is the angular cross-spectrum be-
tween the two masks at the two redshifts. This equation
can then be integrated over (z1, z2) through Eq. 4 to yield
the SSC covariance.

We note that in this redshift-dependent case, we can
no longer permute the k and z integrals as was done in
Sect. 4.3, which yielded a numerically efficient method.
Finding an equally efficient method to compute the SSC
in the general case of redshift-dependent angular window
and partial sky coverage remains, to the best of our knowl-
edge, as an important open problem.

Appendix B: SSC for other probes

The main results of this article were derived for the covari-
ance of cluster number counts. However, it is straightfor-
ward to generalise the equations to other large scale struc-
ture probes, such as galaxy clustering and lensing shear.
In those cases, the covariance equations are simpler for the
angular power spectrum C` than for the angular correla-
tion function. For instance, using Limber’s approximation,
Lacasa & Rosenfeld (2016) have shown that the SSC of the
galaxy angular power spectrum is given by:

Cov
(
Cgal
`1

(iz), C
gal
`2

(jz)
)

=

∫
dV12

ngal(z1)ngal(z2)

∆Ngal(iz) ∆Ngal(jz)

× ∂Pgal(k`1 , z1)

∂δb

∂Pgal(k`2 , z2)

∂δb

× σ2(z1, z2) , (B.1)

where k`i = (`i + 1/2)/r(zi).
For lensing shear, we would get a similar equation, re-

placing the galaxy number density by the lensing selection
function and the 3D galaxy power spectrum by the matter
power spectrum. The equation can thus be generalized to

Cov
(
Cα`1(iz), C

α
`2(jz)

)
=

∫
dV12 Wα(z1)Wα(z2)

× ∂Pα(k`1 , z1)

∂δb

∂Pα(k`2 , z2)

∂δb

× σ2(z1, z2) , (B.2)

where the α index refers to either lensing or galaxy, and
Wα is the corresponding selection function. In that case,
it is straightforward to generalize Eq. 35, even including
the possibility of the cross-covariance between galaxy and
shear:

Cov`

(
Cα`1(iz), C

β
`2

(jz)
)

=
1

2π2

∫
k2 dk P (k|z = 0)

×Ψ`1,α
` (k|iz) Ψ`2,β

` (k|jz) , (B.3)

where

Ψ`i,α
` (k|iz) ≡

∫
z∈bin(iz)

dV G(z)Wα(z)
∂Pα(k`i , z)

∂δb
j`(kr) .

(B.4)

And the cross-covariance between cluster counts and ei-
ther galaxy or shear:

Cov`

(
Ncl(iM , iz), C

β
`2

(jz)
)

=
1

2π2

∫
k2 dk P (k|z = 0)

×Ψnh

` (k|iM , iz) Ψ`2,β
` (k|jz) ,

(B.5)
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which gives us all the equations needed to compute the
auto and cross-covariances of cluster counts, galaxy angu-
lar power spectrum, and lensing shear power spectrum, i.e.
the three main cosmological probes of current and future
photometric galaxy surveys.

Appendix C: First multipoles

The spherical Bessel functions jn(x) obey the recurrence
relation

jn+1(x) =
2n+ 1

x
jn(x)− jn−1(x) , (C.1)

such that they can be written analytically in terms of sines,
cosines and polynomials, given the initial conditions

j−1(x) =
cos(x)

x
, (C.2)

j0(x) =
sin(x)

x
. (C.3)

The first few spherical Bessel functions are given by

j0(x) =
sin(x)

x
, (C.4)

j1(x) =
1

x

sin(x)

x
− cos(x)

x
, (C.5)

j2(x) =

(
3

x2
− 1

)
sin(x)

x
− 3

x

cos(x)

x
. (C.6)

Recall that we are trying to compute the following in-
tegrals :

Cm
` (z12) =

2

π

∫
k2dk j`(kr1) j`(kr2) P (k|z12) . (C.7)

For j`(x) of the form A`(x) sin(x)/x − B`(x) cos(x)/x,
this yields

Cm
` (z12) =

2

π

∫
k2dk

P (k|z12)

k2r1r2

× 1

2

[(
A`(kr1)A`(kr2) +B`(kr1)B`(kr2)

)
× cos

(
k(r1 − r2)

)
+
(
−A`(kr1)A`(kr2) +B`(kr1)B`(kr2)

)
× cos

(
k(r1 + r2)

)
−
(
A`(kr1)B`(kr2)−B`(kr1)A`(kr2)

)
× sin

(
k(r1 − r2)

)
−
(
A`(kr1)B`(kr2) +B`(kr1)A`(kr2)

)
× sin

(
k(r1 + r2)

)]
, (C.8)

where the four integrals are Fourier (sine/cosine) trans-
forms and can be computed numerically with FFTs. Let

us note

I+
c

(
f(k, r1, r2)

)
≡ 2

π

∫
k2dk

P (k|z12)

k2r1r2
f(k, r1, r2)

× cos
(
k(r1 + r2)

)
, (C.9)

I−c
(
f(k, r1, r2)

)
≡ 2

π

∫
k2dk

P (k|z12)

k2r1r2
f(k, r1, r2)

× cos
(
k(r1 − r2)

)
, (C.10)

I+
s

(
f(k, r1, r2)

)
≡ 2

π

∫
k2dk

P (k|z12)

k2r1r2
f(k, r1, r2)

× sin
(
k(r1 + r2)

)
, (C.11)

I−s
(
f(k, r1, r2)

)
≡ 2

π

∫
k2dk

P (k|z12)

k2r1r2
f(k, r1, r2)

× sin
(
k(r1 − r2)

)
. (C.12)

Then Eq. C.8 can be rewritten as

Cm
` (z12) =

1

2

[
I−c
(
A`,1A`,2 +B`,1B`,2

)
+ I+

c

(
−A`,1A`,2 +B`,1B`,2

)
− I−s

(
A`,1B`,2 −B`,1A`,2

)
− I+

s

(
A`,1B`,2 +B`,1A`,2

)]
, (C.13)

with A`,i = A`(kri). For ` = 0 we have A0 = 1 and B0 = 0,
thus

Cm
0 (z12) =

1

2

[
I−c
(
1
)
− I+

c

(
1
)]
. (C.14)

For ` = 1 we have A1 = 1/x and B1 = 1. Therefore

Cm
1 (z12) =

1

2

[
I−c

(
1

k2r1r2
+ 1

)
+ I+

c

(
− 1

k2r1r2
+ 1

)

− I−s
(

1

kr1
− 1

kr2

)
− I+

s

(
1

kr1
+

1

kr2

)]
.

(C.15)

If we define I+/−
c/s,n ≡ I

+/−
c/s (1/kn), the above equations

yield

Cm
0 (z12) =

1

2

[
I−c,0 − I+

c,0

]
, (C.16)

Cm
1 (z12) =

1

2

[
I−c,0 + I+

c,0 − I−s,1
(

1

r1
− 1

r2

)

− I+
s,1

(
1

r1
+

1

r2

)
+
I−c,2 − I+

c,2

r1r2

]
, (C.17)
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For ` = 2 we have A2 = 3/x2 − 1 and B2 = 3/x, thus

Cm
2 (z12) =

1

2

[
I−c

(
9

k4r2
1r

2
2

+
3

k2

(
3

r1r2
− 1

r2
1

− 1

r2
2

)
+ 1

)
+ I+

c

(
− 9

k4r2
1r

2
2

+
3

k2

(
3

r1r2
+

1

r2
1

+
1

r2
2

)
− 1

)
− I−s

(
9

k3r1r2
+

3

k

)
×
(

1

r1
− 1

r2

)
− I+

s

(
9

k3r1r2
− 3

k

)
×
(

1

r1
+

1

r2

)]
(C.18)

=
1

2

[
I−c,0 − I+

c,0 − 3 I−s,1

(
1

r1
− 1

r2

)
+ 3 I+

s,1

(
1

r1
+

1

r2

)
+ 3 I−c,2

(
3

r1r2
− 1

r2
1

− 1

r2
2

)
+ 3 I+

c,2

(
3

r1r2
+

1

r2
1

+
1

r2
2

)
−

9 I−s,3
r1r2

(
1

r1
− 1

r2

)
−

9 I+
s,3

r1r2

(
1

r1
+

1

r2

)
+

9
(
I−c,4 − I+

c,4

)
r2
1r

2
2

]
. (C.19)

We note that A` and B` follow the same recurrence
relation Eq. C.1 as the spherical Bessel functions jn. As
such we can look whether there is a recurrence relation
which would allow us to get the analytical formula for a
general Cm

` (z12). Our efforts in this direction have shown
only partially fruitful and are described below. We have

Cm
`+1(z12) =

1

2

[
I−c
(
A`+1,1A`+1,2 +B`+1,1B`+1,2

)
+ I+

c

(
−A`+1,1A`+1,2 +B`+1,1B`+1,2

)
− I−s

(
A`+1,1B`+1,2 −B`+1,1A`+1,2

)
− I+

s

(
A`+1,1B`+1,2 +B`+1,1A`+1,2

)]
≡ 1

2

(
Cc,−`+1 + Cc,+`+1 − C

s,−
`+1 − C

s,+
`+1

)
, (C.20)

and then

Cc,−`+1 =I−c

[(
2`+ 1

kr1
A`,1 −A`−1,1

)(
2`+ 1

kr2
A`,2 −A`−1,2

)
+

(
2`+ 1

kr1
B`,1 −B`−1,1

)(
2`+ 1

kr2
B`,2 −B`−1,2

)]
(C.21)

= Cc,−`−1 +
(2`+ 1)2

r1r2
I−c
[

(A`,1A`,2 +B`,1B`,2) /k2
]

− (2`+ 1) I−c
[
(A`−1,1A`,2 +B`−1,1B`,2)/kr1

+ (1↔ 2)
]
. (C.22)

Now we define the following quantities

Dc,−
` ≡ I−c

[
(A`−1,1A`,2 +B`−1,1B`,2)/kr1 + (1↔ 2)

]
,
(C.23)

Ec,−` ≡ I−c
[
(A`−1,1A`,2 +B`−1,1B`,2)/kr2 + (1↔ 2)

]
,
(C.24)

and decompose Cc,−` , Dc,−
` and Ec,−` onto the basis I−c,i

Cc,−` =

+∞∑
i=0

αc,−`,i (r1, r2)I−c,i , (C.25)

Dc,−
` =

+∞∑
i=0

βc,−`,i (r1, r2)I−c,i , (C.26)

Ec,−` =

+∞∑
i=0

γc,−`,i (r1, r2)I−c,i . (C.27)

Then Eq. C.22 gives a first recurrence relation

αc,−`+1,i = αc,−`−1,i +
(2`+ 1)2

r1r2
αc,−`,i−2 − (2`+ 1)βc,−`,i . (C.28)

By computing Dc,−
`+1 and Ec,−`+1, we can see that we have

the two other recurrence relations :

βc,−`+1,i = (2`+ 1)
2

r1r2
αc,−`,i−2 − γ

c,−
`,i , (C.29)

γc,−`+1,i = (2`+ 1)

(
1

r2
1

+
1

r2
2

)
αc,−`,i−2 − β

c,−
`,i . (C.30)

The system is closed through the initial conditions

αc,−0,0 = 1 αc,−0,2 = 0 αc,−0,i = 0 for i ≥ 3 (C.31)

αc,−1,0 = 1 αc,−1,2 =
1

r1r2
αc,−1,i = 0 for i ≥ 3 (C.32)

βc,−1,0 = 0 βc,−1,2 =
2

r1r2
βc,−1,i = 0 for i ≥ 3 (C.33)

γc,−1,0 = 0 γc,−1,2 =

(
1

r2
1

+
1

r2
2

)
γc,−1,i = 0 for i ≥ 3 (C.34)

The following properties can easily be shown by recur-
rence:

∀` αc,−`,0 = 1 , βc,−`,0 = 0 , γc,−`,0 = 0 . (C.35)

∀` αc,−`,i = 0 , if i odd or i > 2` . (C.36)

∀` αc,−`,2` =

∏`−1
n=0(2n+ 1)2

(r1r2)`
=

(2`− 1)!2

(4r1r2)` `!2
. (C.37)

With a bit more work, we can in principle solve for βc,−`,2
and γc,−`,2 , since αc,−`,0 = 1:

βc,−`+1,2 = (2`+ 1)
2

r1r2
− γc,−`,2 , (C.38)

γc,−`+1,2 = (2`+ 1)

(
1

r2
1

+
1

r2
2

)
− βc,−`,2 . (C.39)

This can be put in the form

X`+1 = MX` + V` , (C.40)

for

X` =

(
βc,−`,2
γc,−`,2

)
, (C.41)

M =

(
0 −1
−1 0

)
, (C.42)

V` = (2`+ 1)

(
2

r1r2
1
r21

+ 1
r22

)
= (2`+ 1)X1 . (C.43)
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Finally, Eq. C.40 has the following solution :

X` =

`−1∑
k=0

M `−k−1 (2k + 1)X1 , (C.44)

which in principle gives the solution for βc,−`,2 and γc,−`,2 . We
can insert this into Eq. C.28 for i = 2, to get a closed recur-
rence relation for αc,−`,2 and solve for it. In turn, this can be
inserted into Eqs. C.29 and C.30 for i = 4 to get a closed
recurrence relation for (βc,−`,4 , γ

c,−
`,4 ), and so on. So this rep-

resents a procedure for solving this set of equations and get
analytical expressions for Cc,−` . Similarly, we could derive
recurrence relations for Cc,+` , Cs,−` and Cs,+` . In practice
this represents a daunting task, as even the formula for
` = 2 (Eq. C.19) is already cumbersome.

Moreover, we may expect that these analytical formu-
lae are doomed to present numerical instability at high `.
Indeed, the expansion of the spherical Bessel functions in
terms of powers of 1/x as in Eqs. C.4-C.5-C.6 is ill-advised
at high `, as it leads to delicate cancellations of the numer-
ous terms, in particular for x ≤ `. We thus expect that our
analytical formulae for C` will also lead to delicate cancel-
lations which may be numerically unstable. Another way of
seeing this is to notice that, at high `, we have from Lim-
ber’s approximation that C` ∝ P [k = (`+ 1/2)/r(z)], and
will thus be a decreasing function of `. However we saw that
αc,−`,0 = 1 and thus C` always contains a term I−c,0/2 ≈ C0.
This term will hence need to be (at least partially) cancelled
by higher order terms, and this cancellation will need to be
increasingly precise at high `, since P (k) is a steep decreas-
ing function of k.

Given these issues, in practice, we implemented this low
multipole method only for ` = 0, 1, 2, and used these to
check our results obtained from the numerical method de-
scribed in Sect. 4.3.
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