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ABSTRACT

We present an empirical method for estimating the underlying redshift distribution N(z) of
galaxy photometric samples from photometric observables. The method does not rely on
photometric redshift (photo-z) estimates for individual galaxies, which typically suffer from
biases. Instead, it assigns weights to galaxies in a spectroscopic subsample such that the
weighted distributions of photometric observables (e.g. multiband magnitudes) match the
corresponding distributions for the photometric sample. The weights are estimated using a
nearest neighbour technique that ensures stability in sparsely populated regions of colour–
magnitude space. The derived weights are then summed in redshift bins to create the redshift
distribution. We apply this weighting technique to data from the Sloan Digital Sky Survey
as well as to mock catalogues for the Dark Energy Survey, and compare the results to those
from the estimation of photo-zs derived by a neural network algorithm. We find that the
weighting method accurately recovers the underlying redshift distribution, typically better
than the photo-z reconstruction, provided the spectroscopic subsample spans the range of
photometric observables covered by the photometric sample.

Key words: galaxies: distances and redshifts – galaxies: statistics – distance scale – large-
scale structure of Universe.

1 IN T RO D U C T I O N

On-going, wide-field surveys are delivering photometric galaxy
samples of unprecedented scale. Optical and near-infrared (NIR)
surveys planned for the next decade will increase the sizes of such
samples by an order of magnitude. Much of the utility of these
samples for astronomical and cosmological studies rests on knowl-
edge of the redshift distributions of the galaxies they contain. For
example, surveys aimed at probing dark energy via clusters, weak
lensing and baryon acoustic oscillations (BAO) will rely on the
ability to coarsely bin galaxies by redshift, enabling approximate
distance–redshift measurements as well as study of the growth of
density perturbations. The power of these surveys to constrain cos-
mological parameters will be limited in part by the accuracy with
which the galaxy redshift distributions can be determined (Huterer
et al. 2004, 2006; Ma, Hu & Huterer 2006; Zhan 2006; Zhan &
Knox 2006; Lima & Hu 2007).

Photometric redshifts (photo-zs, denoted zphot below) – approxi-
mate estimates of galaxy redshifts based on their broad-band photo-
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metric observables, e.g. magnitudes or colours – offer one technique
for approaching this problem. Photo-zs have the advantage that they
provide redshift estimates for each galaxy in a photometric cata-
logue; such information is useful for certain studies (Mandelbaum
et al. 2008). However, in many applications we do not need such
galaxy-by-galaxy information – instead, we only require an estimate
of the redshift distribution of a sample of galaxies selected by some
set of photometric observables. For example, cosmic shear weak
lensing or angular BAO measurements rely on relatively coarse
binning of galaxies in redshift, and it suffices to have an accurate
estimate of the redshift distribution N(z) for galaxies satisfying cer-
tain colour or magnitude selection criteria (Sheldon et al. 2004,
2007a; Jain, Connolly & Takada 2007). Photo-z estimators are not
typically designed to provide unbiased estimates of the redshift
distribution: N(zphot) is biased by photo-z errors.

Although deconvolution (Padmanabhan et al. 2005) or other tech-
niques (Sheth 2007) can be used to obtain improved estimates of
the redshift distribution from photo-z measurements, this problem
motivates the development of a method optimized to directly es-
timate the underlying redshift distribution N(z) for a photometric
sample. In addition to its direct utility, a precise, unbiased estimate
of the redshift distribution is useful even for probes that do require
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individual galaxy redshifts, since it provides a template for charac-
terizing photo-z errors.

In this paper we present an empirical technique to estimate N(z)
for a photometric galaxy sample that is based upon matching the
distributions of photometric observables of a spectroscopic subsam-
ple to those of the photometric sample. The method assigns weights
to galaxies in the spectroscopic subsample (hereafter denoted the
training set, in analogy with machine-learning methods of photo-z
estimation), so that the weighted distributions of observables for
these galaxies match those of the photometric sample. The weight
for each training-set galaxy is computed by comparing the local
‘density’ of training-set galaxies in the multidimensional space of
photometric observables to the density of the photometric sample in
the same region. We estimate the densities using a nearest neighbour
approach that ensures the density estimate is both local and stable
in sparsely occupied regions of the space. The use of the nearest
neighbours ensures optimal binning of the data, which minimizes
the requisite size of the spectroscopic sample. After the training-set
galaxy weights are derived, we sum them in redshift bins to estimate
the redshift distribution.

As we will show, this method provides a precise and nearly un-
biased estimate of the underlying redshift distribution for a photo-
metric sample and does not require photo-z estimates for individual
galaxies. Moreover, the spectroscopic training set does not have
to be representative of the photometric sample, in its distributions
of magnitudes, colours or redshift, for the method to work. We
only require that the spectroscopic training set cover, even sparsely,
the range of photometric observables spanned by the photometric
sample. The method can be applied to different combinations of
photometric observables that correlate with redshift – in this paper,
we confine our analysis to magnitudes and colours. In a companion
paper (Cunha et al., in preparation), we compare this weighting tech-
nique to the deconvolution method of Padmanabhan et al. (2005)
and show that the weights can be used to naturally regularize and
improve the deconvolution.

The paper is organized as follows. In Section 2 we present the
simulated and real galaxy catalogues used to test the method. In
Section 3 we describe the algorithm for the calculation of the
weights of training-set galaxies using a nearest neighbour method.
In Section 4 we define simple statistics to assess the quality of the
reconstructed distributions. In Section 5 we present N(z) estimates
derived from the weighting method and compare with results us-
ing photo-zs for individual galaxies derived from a neural network
algorithm. We discuss the results and present our conclusions and
perspectives in Section 6. In Appendix A, we provide a brief de-
scription of the neural network photo-z algorithm that we use for
comparison with the weighting method.

2 C ATA L O G U E S

We use two sets of catalogues to test the method. The first is based
upon simulations of the Dark Energy Survey (DES). The second de-
rives from photometry for galaxies in the Sloan Digital Sky Survey
(SDSS). We describe them in turn.

2.1 DES mock catalogues

The DES is a 5000 deg2 survey in five optical passbands (grizY)
with an AB magnitude limit of i ≈ 24 (the approximate 10σ limit
for galaxies), to be carried out using a new camera on the CTIO
(Cerro Tololo Inter-American Observatory) Blanco 4-m telescope.
The goal of the survey is to measure the equation of state of dark

energy using several techniques: clusters of galaxies, weak lensing,
BAO and supernovae. The DES optical survey will be comple-
mented in the NIR by the VISTA Hemisphere Survey (VHS), an
ESO (European Southern Observatory) Public Survey on the VISTA
4-m telescope that will cover the survey area in three NIR bands
(JHK). For simplicity we will only use the optical DES bands in our
results and analysis presented below.

Our fiducial simulated DES catalogue contains 500 000 galaxies
with redshift z < 2 and with 20 < i < 24, and will serve as the pho-
tometric set we will be attempting to recover. The magnitude and
redshift distributions were derived from the galaxy luminosity func-
tion measurements of Lin et al. (1999) and Poli et al. (2003), while
the galaxy spectral energy distribution (SED)-type distribution was
obtained from measurements of the Hubble Deep Field-North/Great
Observatories Origins Deep Survey (HDF-N/GOODS) field (Capak
et al. 2004; Cowie et al. 2004; Wirth et al. 2004). The galaxy colours
were generated using the four Coleman, Wu & Weedman (1980)
templates – E, Sbc, Scd, Im – extended to the ultraviolet (UV)
and NIR using synthetic templates from Bruzual & Charlot (1993).
These templates are mapped to a galaxy SED-type t as (E, Sbc,
Scd, Im) → t = (0, 1, 2, 3). To improve the sampling and coverage
of colour space, we created additional templates by interpolating
between adjacent templates and by extrapolating from the E and Im
templates, such that the SED-type t ranges over [− 0.5, 3.5] contin-
uously, with t = −0.5 (3.5) corresponding to very early-type (very
late-type) galaxies. The magnitude errors were modelled as sky-
background-dominated errors approximated as uncorrelated Gaus-
sians. This implementation of the DES mock catalogue is similar to
the one employed in Banerji et al. (2008).

In order to vary the parameters of this fiducial DES catalogue
and to create spectroscopic training sets from it, we adopt an equiv-
alent analytic description of this sample that is easier to work with.
The photometric sample can be fully specified by providing the
distributions of i magnitude, redshift z and SED-type t. That is, the
catalogue can be constructed by repeated sampling from a proba-
bility distribution P(i, z, t), since the ‘pre-noise’ magnitudes in the
other passbands are uniquely determined by these three quantities.

We can write the probability P(i, z, t) as a product of conditional
probabilities:

P (i, z, t) = P (i)P (z|i)P (t |i, z) , (1)

where P(i) is the probability that a galaxy in the sample has i-band
magnitude i, P(z|i) is the probability that a galaxy of that magnitude
has redshift z and P(t|i, z) is the probability that a galaxy of that
magnitude and redshift has SED-type t. The galaxy i magnitudes,
redshifts z and SED-types t have the ranges specified above, i.e. the
conditional probability distributions are truncated sharply at those
values and normalized by∫ 24

20
P (i) di =

∫ 2

0
P (z|i) dz =

∫ 3.5

−0.5
P (t |i, z) dt = 1, (2)

which implies that P(i, z, t) is properly normalized. For the DES
sample generated according to the observed luminosity function
and SED-type distributions noted above, we find that the magnitude
and redshift distributions can be accurately parametrized by

P (i) = A exp

[(
i − 20

a

)0.5
]

, (3)

P (z|i) = Bz2 exp

{
−

[
z − zd (i)

σd (i)

]2
}

, (4)
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Figure 1. Distributions of i magnitude (left-hand panel), redshift z given i magnitude for i = 20, 22, 24 (middle panel) and galaxy-type t (right-hand panel) for
the fiducial DES mock catalogue. Shaded and hatched regions show the data from the original description of the catalogue in terms of luminosity functions;
solid lines indicate analytical fits to the data (see equations 3 and 4). Lower (higher) values of t correspond to early (late) spectral types, and the t distribution
shows evidence of bimodality.

where the functions zd (i) and σd (i) are defined by

zd (i) = b1 + b2(i − 20) + b3(i − 20)2, (5)

σd (i) = c1 + c2(i − 20)c3 . (6)

Here A = A(a) and B = B(zd , σd ) are normalization factors de-
termined once the constants a, bj , cj are specified. For the pho-
tometric sample of the mock DES catalogue, we find good fits
with a = 0.29, (b1, b2, b3) = (−0.2, 0.75, − 0.28) and (c1, c2, c3) =
(0.39, 0.012, 3.2). We use these parametric distributions to generate
the mock DES samples for our analysis. The original catalogue data
constructed in terms of luminosity functions along with the result-
ing analytic distributions are shown in the first two panels of Fig. 1.
Notice that the quality of these fits is irrelevant to our results and
conclusions; we only use them as a convenient way of generating
alternative catalogues.

For simplicity, we assume that the SED-type distribution is inde-
pendent of magnitude and redshift,

P (t |i, z) = P (t), (7)

and has the bimodal shape given in the third panel of Fig. 1, which
comes from the original construction of the catalogue in terms of
luminosity functions and the HDF-N/GOODS-type distribution.

In Section 5 we explore how well the redshift distribution N(z)
of the DES mock photometric sample created by this prescription,
shown in the right-hand panel of Fig. 5, can be recovered from
spectroscopic training sets that have different P(i, z, t) distributions
from the photometric sample.

2.2 SDSS data catalogues

While the mock catalogues are useful for study of parameter depen-
dencies and to gain insight into the efficiency and requirements of
the N(z) reconstruction method, they do not capture all the degen-
eracies and features of real catalogues.

Therefore, we also test the weighting procedure using a combi-
nation of spectroscopic catalogues with SDSS DR6 (Data Release
6) photometry in ugriz bands. The derived spectroscopic sample is
similar to the one we used in constructing the DR6 galaxy photo-
z catalogue (Oyaizu et al. 2008), and we apply the same redshift
quality and photometry cuts as were used there. Together these
catalogues contain 288 456 galaxies with r < 22. We use 200 000
galaxies from the SDSS DR6 main and luminous red galaxy (LRG)

spectroscopic samples, 20 381 from the Canadian Network for Ob-
servational Cosmology (CNOC) Field Galaxy Survey (CNOC2;
Yee et al. 2000), 1541 from the Canada–France Redshift Survey
(CFRS; Lilly et al. 1995), 11 040 colour-selected galaxies from the
Deep Extragalactic Evolutionary Probe (DEEP; Davis et al. 2001)
and the DEEP2 surveys (Weiner et al. 2005),1 2078 galaxies from
a roughly flux-limited sample from the Extended Groth Strip in
DEEP2 (DEEP2/EGS; Davis et al. 2007), 654 from the Team Keck
Redshift Survey (TKRS; Wirth et al. 2004) and 52 762 from the
2dF-SDSS LRG and QSO (quasi-stellar object) Survey (2SLAQ;
Cannon et al. 2006).2 The numbers of galaxies used from each cat-
alogue are smaller than those in Oyaizu et al. (2008), because we
cut the samples at r < 22, as opposed to the r < 23 limit adopted in
that work. Furthermore, the numbers above include repeat objects
due to repeat imaging in the SDSS BestRuns database, which was
used to positionally match the galaxies.

In Fig. 2, we show the distributions of r magnitude, r − i colour
and spectroscopic redshift zspec for each spectroscopic catalogue.
In combination, these data sets span a large range of magnitude,
colour and redshift. We use these catalogues as a test case for
our reconstruction methods of the redshift distribution below. In
Cunha et al. (in preparation), we use simulations to investigate the
effectiveness of the weighted N(z) estimation on the SDSS DR6
Photoz2 sample described in Oyaizu et al. (2008).

3 TH E W E I G H T I N G ME T H O D

The weighting method for reconstructing N(z) for a photometric
sample relies on the fact that a spectroscopic subsample of the
galaxies with precisely measured redshifts is usually available.
However, due to observational constraints, the spectroscopic sub-
sample typically has different distributions of magnitudes, colours
and, therefore, redshift than the parent photometric sample, e.g. the
spectroscopic sample may contain galaxies that are mostly much
brighter than the flux limit of the photometric sample or the spec-
troscopic sample may be selected to lie within certain windows of
colour space. The weighting technique compensates for this mis-
match by weighting galaxies in the spectroscopic sample so that
the weighted sample has the same distribution of photometric ob-
servables (colours, magnitudes) as the parent photometric sample.

1 http://deep.berkeley.edu/DR2/
2 http://lrg.physics.uq.edu.au/New_dataset2/
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Figure 2. Distributions of r magnitude (left-hand panels), r − i colour (middle panels) and spectroscopic redshift zspec (right-hand panels) for each spectroscopic
catalogue used with SDSS photometry. Also shown in the left-hand panels are the total numbers of galaxies in each spectroscopic sample, counting repeated
objects.

The key assumption behind the method is that two samples with
identical distributions of photometric observables will have iden-
tical distributions of redshift N(z), so that the redshift distribution
for the weighted spectroscopic sample serves as an estimate of the
redshift distribution for the photometric sample. In Section 6, we
discuss the conditions that are required for this assumption to hold
and the systematic errors that can arise for the N(z) estimate if those
conditions are not met.

In the remainder of this section, we describe the construction of
the weighting method.

3.1 Matching distributions: redshifts

We are interested in estimating N(z) for a photometric set of interest.
In practice, to estimate this distribution, we need to bin galaxies and
compute the binned redshift distribution. Consider first binning the
photometric and spectroscopic samples by non-overlapping redshift
bins, denoted i below. We define the normalized redshift distribu-
tions in the ith redshift bin [zi , zi + �zi] in the photometric sample
(subscript P) and in the spectroscopic training set (subscript T) as

PP(zi) ≡ 1

NP,tot

NP(zi)

�zi

= ρP(zi)

NP,tot
, (8)

PT(zi) ≡ 1

NT,tot

NT(zi)

�zi

= ρT(zi)

NT,tot
, (9)

where Ntot is the total number of galaxies in each catalogue, N(zi) is
the number of galaxies in the ith redshift bin, and we have defined
the redshift density

ρ(zi) ≡ N (zi)

�zi

. (10)

In general, PT(zi) �= PP(zi). Using weights, we would like to
transform PT(zi) into a new distribution, PT,wei(zi), that provides an
unbiased estimate of PP(zi). Therefore, in an ensemble of different
training and photometric sets (e.g. Monte Carlo samples or bootstrap

realizations), we would like the expectation value of these estimates
– indicated by 〈·〉 below – to be equal to PP(zi),

PP(zi) = 〈PT,wei(zi)〉 . (11)

To accomplish this, we weight objects in the spectroscopic training
set according to their local density in the space of photometric
observables.

To motivate the form of the weights, we first consider the idealized
case of weighting directly in redshift. We seek a set of weights Wα

for the spectroscopic training-set galaxies indexed by α such that
the redshift distribution of the weighted training set is given by

PT,wei(zi)�zi ≡
∑NT(zi )

α=1 Wα∑NT,tot
α=1 Wα

, (12)

where the sum in the numerator is over objects in the ith redshift bin
and that in the denominator is over all objects in the spectroscopic
training set. The weights can be normalized by

NT,tot∑
α=1

Wα = 1. (13)

Clearly, equation (12) reduces to equation (9) if all objects have
the same weight. We write the equations above in terms of non-
overlapping redshift bins because that is what we will show in our
results after computing the galaxy weights Wα . Consider now an al-
ternate estimate of N(z) with overlapping bins centred at individual
galaxies, indexed by β, with corresponding bin sizes �zβ , possibly
varying from galaxy to galaxy. All equations (8)–(12) apply after
substituting indices i by β. For sufficiently narrow bins �zβ , al-
though galaxies inside a given bin may not be localized in the space
of observables, they are indistinguishable from their redshift alone.
If all we care about is a match of the redshift distributions (and not
of the observables), then these galaxies should have similar weights,
labelled Wβ . In this case,

NT(zβ )∑
α=1

Wα ∼ NT(zβ )Wβ. (14)
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Combining the results of equations (8), (11)–(14) yields

1

NP,tot

NP(zβ )

�zβ

= NT(zβ )Wβ

�zβ

, (15)

from which it follows that the idealized weights are given by

Wβ = 1

NP,tot

ρP(zβ )

ρT(zβ )
. (16)

Of course, equation (16) is not useful in practice, since we do not
know how to estimate the redshift density ρP(z) for the photometric
sample. In principle, one could do the matching in photo-z space,
but photo-z estimates are subject to bias. Therefore, we replace
the redshift binning by an equivalent aperture in the photometric
observables.

3.2 Matching distributions: observables

For concreteness let us momentarily take the photometric observ-
ables to be the Nm magnitudes of each galaxy, where Nm is the
number of filter passbands in the survey: the magnitude vector of
the αth galaxy in a sample is mα = ma

α , with a = 1, . . . , Nm.
The distance dαβ in magnitude space between the αth and βth

galaxies in a (photometric or spectroscopic) sample is defined with
a flat Euclidean metric

(dαβ )2 ≡ (mα − mβ )2 =
Nm∑
a=1

(ma
β − ma

α)2. (17)

Although the equations below will be written in magnitude space,
we will also use the proximity of galaxies in the joint hyperspace
of colours and magnitudes; in that case distances are still defined
with an Euclidean metric, but we scale colours and magnitudes so
that their interesting ranges lie between 0 and 1 in order to have all
observables given roughly equal weights.

The choice of observables and metric is not unique. The method
can be generalized to explore the information of additional observ-
ables. We expect improvements if the observables correlate strongly
with redshift and have small relative errors; if that is not the case
extra observables may in fact only add degeneracies. Combining
observables of completely different nature, such as colours and
sizes of galaxies, may be challenging due to the different scales and
metrics involved; however, observables such as surface brightness,
which combine magnitude and size information into a single quan-
tity, might be useful (Stabenau, Connolly & Jain 2008). Here we
limit ourselves to colours and magnitudes, and leave investigations
of additional observables and their combinations to future work.

Given the above metric, a cell in magnitude space of radius dm

defines an Nm-dimensional hypervolume, Vm=dm
Nm

. The magnitude
density in multimagnitude space at point m within Vm is estimated
as

ρ(m) ≡ N (m)

Vm

, (18)

where N(m) is the number of objects in the corresponding magni-
tude region.

The redshift distribution of the photometric set can be rewritten
as

PP(zi) = ρP(zi)

NP,tot
=

∫
dm PP(zi |m)

ρP(m)

NP,tot
. (19)

Similarly, the distribution of the weighted training is given by

PT,wei(zi) = ρT(zi)Wα =
∫

dm PT(zi |m)ρT(m)Wα. (20)

Motivated by equation (16) and given our desire to set PT,wei(zi) =
PP(zi), we redefine the galaxy weights – now as a function of mag-
nitude densities – as

Wα = 1

NP,tot

ρP(m)

ρT(m)
. (21)

Therefore, the weighted training set distribution will provide an
unbiased estimate of the true distribution in the photometric set if∫

dm PP(zi |m)ρP(m) =
∫

dm PT(zi |m)ρP(m). (22)

Notice that for a given magnitude m, there could be a broad
range of possible redshifts z due to degeneracies, and the weighting
method would still work as long as equation (22) is satisfied. One
obvious instance where this happens is if

PP(zi |m) = PT(zi |m), (23)

i.e. if the training and photometric sets have the exact same de-
generacies between redshift and magnitudes. Although only the
integrals of PT(z|m) and PP(z|m) need to coincide in all magnitude
regions, this will be very unlikely if the two functions do not match
point by point in magnitude space. Therefore, in practice we require
these functions to match locally everywhere.

A training set may violate the condition of equation (23) if it
has selection effects that are very different from those of the pho-
tometric set. If the selection is made in the space of observables,
it does not change the relevant local properties of the training set
and either the condition is not violated or can be easily account for.
A typical case would be a training set made of a combination of
smaller surveys, each one bounded by certain colour windows. Be-
cause the distributions of redshift given colours are preserved in the
overlapping regions of the different surveys, if the full training set
still covers the same observable regions as the photometric sample,
the condition is not violated. Otherwise we can restrict ourselves
to the portion of the photometric set that is covered by the training
set, where the condition is not violated. More details of the latter
case will be presented in Cunha et al. (in preparation). Selection
effects due to spectroscopic failure and large-scale structure (LSS)
are more difficult to model and control.

In the case where degeneracies are small, P(zi |m) approaches a
delta function δ(zi |m) and we have ρ(zi) = ρ(m), i.e. the magnitude
hypervolume Vm specifies uniquely a corresponding cell in redshift
�z as indicated in Fig. 3. The latter is typically the assumption
of empirical photo-z methods; violation of this condition leads to
photo-z biases and spurious peaks in the photo-z distribution. In
contrast, the weighting method works more generally, since the
only requirement is that the redshift distribution inside Vm must be
the same for training and photometric sets.

In order to calculate weights for training-set galaxies using equa-
tion (21), we estimate the density ρ(m) using the nearest neighbour
prescription described below.

3.3 Neighbours in magnitude space

A nearest neighbour approach to calculating the density of galaxies
in magnitude space is advantageous, because it enables control of
statistical errors (shot noise) while also ensuring adequate ‘locality’
of the cells in magnitude space.

We use the distance defined in equation (17) to find the set of
nearest neighbours to the αth object, i.e. the set of galaxies with
the smallest dαβ . The density in magnitude space around this ob-
ject, ρ(mα), is then estimated as the ratio of the number of nearest
neighbours Nnei to the magnitude hypervolume Vm that they occupy,
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Figure 3. Idealized magnitude–redshift hypersurface for Nm = 2 mag.
Without degeneracies, the hypervolume in magnitude space surrounding
a galaxy, Vm ∝ d

Nm
m , corresponds to an approximate redshift interval �z.

Whereas empirical photo-z methods usually make this implicit assumption,
the weighting method works under more general conditions.

cf. equation (18). For fixed Nnei, if we order the neighbours by their
distance from the αth galaxy, then we can define the hypervolume
by the distance from α to the (Nnei)th (most distant) neighbour,
indexed by γ, Vm = (dαγ )Nm .

Estimating the local density in the spectroscopic training set using
a fixed (non-zero) value for NT(mα) = Nnei ensures that the density
estimate is positive definite and that the resulting weight is well
defined. To estimate the corresponding density in the photometric
sample, we simply count the number of galaxies in the photometric
sample, NP(mα), that occupy the same hypervolume Vm around the
point mα . Since the densities are estimated in the spectroscopic
and photometric sets using the same hypervolume, the ratio of the
densities is simply the ratio of the corresponding numbers of objects
within the volume, and the weight for the αth training-set galaxy is
therefore given by

Wα = 1

NP,tot

NP(mα)

NT(mα)
. (24)

The optimal choice of Nnei balances locality against statistical
errors. By locality we mean that the distance to the (Nnei)th nearest
neighbour, dαγ , should ideally be smaller than the characteristic
scale in magnitude space over which ρ(m) varies; this argues for
small hypervolumes, i.e. small values of Nnei. On the other hand, if
Nnei is chosen too small, the resulting estimate of the density, ρ(m)
= Nnei/Vm, will suffer from large shot-noise error. The resulting
statistical error on the weight is

δWα

Wα

=
[

1

NP(mα)
+ 1

NT(mα)

]1/2

. (25)

The optimal value of Nnei will depend on the characteristics of the
photometric and spectroscopic samples at hand and should be deter-
mined using mock catalogues. For the DES and SDSS catalogues,
we find in Section 5 that the quality of the N(z) reconstruction is
relatively insensitive to the choice of Nnei. The results we present
there use the optimal values of Nnei determined by trial and error.

This implementation of the nearest neighbour approach to esti-
mating the magnitude–space densities and weights is not unique.

For example, we could have instead used the same number of neigh-
bours in both the spectroscopic and photometric samples, in which
case the weights would be given by the ratio of corresponding hy-
pervolumes:

Wα = 1

NP,tot

[
(dαγ )T

(dαγ ′ )P

]Nm

, (26)

where γ ′ indicates the (Nnei)th nearest neighbour in the photometric
sample. Our tests indicate that this produces similar results to the
fixed hypervolume method, but that the latter is slightly more stable
in sparsely occupied regions of the spectroscopic and photometric
samples. In a region of magnitude space that is sparsely occupied
in the photometric sample, using a fixed number of objects can
result in a non-local estimate of the density. Fixing the hypervol-
ume instead tends to avoid that problem. The results we present in
Section 5 use the fixed hypervolume, equation (24), to estimate the
weights.

3.4 Weight renormalization

If the spectroscopic training set has significantly different distribu-
tions of photometric observables than the photometric sample, then
there may be galaxies in the training set that have very few or no
neighbours in the photometric sample. Such galaxies will receive
very small or zero weight and therefore make no contribution to the
estimate of NP(z). In this case, a recalculation of the weights may
improve the accuracy of the redshift distribution reconstruction.

The idea is to perform a recalculation similar to a renormalization
procedure. After an initial calculation of the weights, we remove
objects from the training set that were assigned very small or zero
weights. Using the objects that remain, the weights are recalculated,
possibly using a smaller number of neighbours to achieve more
locality of the new weights. This procedure can be iterated until
some convergence of the weights is achieved.

Notice that whereas objects with zero weights do not give an
effective contribution to the estimation of the redshift distribution,
they still affect the weights of other objects when they are used as
neighbours.

As this renormalization procedure is iterated, the distribution in
photometric observables of the remaining training-set objects will
approach that of the photometric sample, and the weights become
more homogeneous.

We have found the renormalization to be useful if a large fraction
of the training-set objects have very small or zero weights. However,
we do not expect to apply renormalization in practical situations,
since the training set will typically be much less dense than the
photometric set of interest. We suggest the use of simulations to
study if the renormalization may help or not in each case. We
present a case in which the renormalization significantly improves
the weighting in Section 5.

3.5 Summary of the algorithm

To summarize, we outline the steps of the algorithm used to estimate
the redshift distribution N(z) of a photometric sample.

(i) For each galaxy α in the spectroscopic training set, find a fixed
number NT(mα) = Nnei of its nearest neighbours in the training set
according to the interobject distance defined in equation (17) and
compute the cell radius dαγ as the distance to the (Nnei)th nearest
neighbour (Sections 3.2 and 3.3).
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(ii) Find the corresponding number NP(mα) of objects in the
photometric sample that fall within the same cell radius (volume)
(Section 3.3).

(iii) Compute the weight Wα of the training-set galaxy according
to equation (24) (Section 3.3).

(iv) Repeat the weight calculation for each galaxy in the spec-
troscopic training set. Estimate the redshift distribution PP(zi) by
summing the weights for all training-set galaxies in the ith redshift
bin, cf. equation (12) (Section 3.1).

(v) If a large number of training-set galaxies have very low or
zero weight, the renormalization procedure of Section 3.4 can be
implemented.

3.6 Weighting versus photo-zs

It is worth contrasting the key assumption of the weighting method
– that samples with identical distributions of photometric observ-
ables have identical distributions of redshift – with the stronger as-
sumption implicit in training-set-based photo-z estimates. Photo-z
estimators assume that there is (and try to find) a functional corre-
spondence between a set of photometric observables and redshift;
degeneracies in that correspondence lead to photo-z biases. For the
weighting method, all that is assumed is that values of the photo-
metric observables uniquely determine the redshift probability dis-
tribution of galaxies with those observables, a distribution which
may be multiply peaked, as long as these features appear in both
the training and photometric sets. Moreover, the weights from a
number of training-set galaxies are summed to estimate N(zi) in a
given redshift bin. If that number is reasonably large, this stack-
ing will tend to cancel out possible statistical errors in individual
galaxy weights. In Cunha et al. (in preparation), we show how the
weighting procedure can be used to estimate a redshift distribution
p(z) for each galaxy in the photometric sample and thereby avoid
the biases of photo-z estimates. Mandelbaum et al. (2008) show
that using this weighted p(z) in place of photo-zs is very effective
in reducing calibration biases in galaxy–galaxy weak lensing.

In Section 5, we will present results for both the weighting method
and photo-z estimates from an empirical technique using neural net-
works (described in Appendix A). In Cunha et al. (in preparation),
we compare the weighting method to deconvolution techniques and
show how the galaxy weights may improve regularize deconvolu-
tion methods.

4 MEASURES O F R ECONSTRUCTION

QUALITY

We measure the quality of the estimated redshift distribution recon-
struction using two simple metrics. The first is the χ 2 statistic (per
degree of freedom and per galaxy), defined as

(χ 2)X = 1

Nbin − 1

Nbin∑
i=1

[PX(zi) − PP(zi)]
2

PP(zi)
, (27)

where Nbin is the number of redshift bins used, and PX(zi) is equal
to PT,wei(zi) if the weighting procedure is used, or equal to PP(zphot,i)
if the redshift distribution is instead estimated using photo-zs. The
usual definition of χ 2 uses the numbers N(zi) of objects in given
bins instead of the normalized probability P(zi); multiplying our χ 2

by �zN tot gives the usual definition. We chose the above version so
the resulting quantity is independent of the number of galaxies and
the number of redshift bins. The definition allows us to more fairly
compare reconstruction qualities across different data sets. Because

the probabilities are normalized, the number of degrees of freedom
is Nbin − 1.

The second metric we employ is the Kolmogorov–Smirnov (KS)
statistic, defined as the maximum difference between the two cu-
mulative redshift distributions being compared, for example, the
cumulative distributions corresponding to PT,wei(zi)�z and PP(zi)
�z. The KS statistic is more sensitive to the changes in the median
of the two compared distributions whereas the χ 2 tends to stress
regions of the distribution that are least well sampled, i.e. regions
where P(zi) is small. In our implementation, we use binned cumula-
tive distributions instead of unbinned cumulative distributions, and
therefore our metric is not strictly the KS statistic.

It is important to stress that we do not associate any fundamental
meaning to the absolute values of the metrics introduced above.
They are used solely to compare the qualities of different recon-
structions relative to each other.

For the DES mock catalogues, we use Nbin = 50 redshift bins
covering the redshift interval z = 0–2. For the real catalogues based
on SDSS photometry, we use Nbin = 30 bins over z = 0–1.2. In both
sets of catalogues, the bins are equally sized in redshift.

5 R ESULTS

In this section, we test the methods of reconstruction of the redshift
distribution on several simulated and real data sets.

5.1 DES mock catalogue

We first consider the DES mock photometric catalogue of 500 000
galaxies described in Section 2.1. We test the reconstruction using
two spectroscopic training sets comprising 100 000 galaxies each.
Each of them has different distributions of magnitude, redshift and
galaxy type from the photometric sample.

For the first training set, the magnitude and type distributions
P(i) and P(t) differ from those of the photometric sample (recall the
latter are given by equation 3 and Fig. 1), but the conditional red-
shift probability P(z|i) is identical to that of the photometric sample,
equation (4). In particular, the spectroscopic i magnitude distribu-
tion, shown as the horizontal hatched region in Fig. 4, is skewed
toward brighter magnitudes (and therefore lower redshift) than that
of the photometric sample, with a peak at i � 20.5, though it does
include galaxies to the photometric limit, i = 24. The spectroscopic-
type distribution P(t) is chosen to be flat over the interval t = −0.5 to
3.5, in contrast to the bimodal photometric-type distribution shown
in Fig. 1. The spectroscopic-type distribution may differ from that of
the photometric sample due to e.g. colour selection in spectroscopic
targeting or higher spectroscopic efficiency for certain galaxy types.

The weights were computed from equation (24), using the nearest
neighbours in a fixed hypervolume in the space of all colours and
i magnitude. The hypervolume for each training set galaxy was
defined by the Nnei = 16 nearest neighbours in the training set. Our
tests indicated that this value of Nnei yields the lowest value for χ 2

for the reconstruction in this case. However, as noted earlier, the
results are not sensitive to this choice. Increasing Nnei to 64 causes a
negligible change in χ 2, while decreasing it to 4 causes an increase
of less than 20 per cent in χ 2.

Figs 4 and 5 display the reconstruction results for this case using
the weighting method. Fig. 4 shows the distributions of magnitudes
and colours for the photometric sample (solid grey), the spectro-
scopic training sample (horizontal hatched) and the weighted train-
ing set (black line). The coincidence of the grey and black regions
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Figure 4. Distributions of magnitudes grizY and colours g − r, r − i, i − z, z − Y for the DES mock photometric catalogue and for the first spectroscopic
training set. Grey regions indicate the distributions in the photometric sample, horizontal hatched regions indicate those for the spectroscopic training set and
the solid black histograms are those for the weighted training set.

Figure 5. Left-hand panel: photometric redshift zphot versus spectroscopic redshift zspec for a random sampling of galaxies in the DES mock catalogue. Photo-zs
were computed using the neural network algorithm described in Appendix A, using the first spectroscopic training set described in the text. The dashed and
dotted curves are the contours containing 68 and 95 per cent of the galaxies in narrow bins of zspec. Also indicated are the overall rms photo-z scatter σ and 68
per cent confidence region σ 68 (see their definition in the text). Right-hand panel: redshift distributions. The shaded grey region shows the redshift distribution
of the photometric sample that we are aiming to reconstruct. The horizontal hatched distribution shows the redshift distribution of the spectroscopic training
set corresponding to the magnitude and colour distributions shown in Fig. 4. The solid black histogram shows the reconstructed redshift distribution using the
weighting method. The dotted lines show the neural network photo-z distribution of the photometric set, showing peaks due to photo-z biases. Also indicated
are the χ2 and KS statistics for both the weighting method and the photo-z distribution.
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Figure 6. As Fig. 5, but now using the second spectroscopic training set described in the text. In this case, the training set is even less representative of the
photometric sample than in the previous example, but the weighting procedure still accurately reconstructs the redshift distribution of the photometric sample.

demonstrates that the weighted training-set distributions in magni-
tudes and colours are excellent matches to those of the photometric
sample. The right-hand panel of Fig. 5 shows that the weighted
training-set redshift distribution also provides a precise estimate of
the redshift distribution of the photometric sample. The measures
of reconstruction quality for this match are (χ 2)T,wei = 0.002 and
(KS)T,wei = 0.009.

For comparison, we also carry out the N(z) reconstruction using
photo-z estimates. The left-hand panel of Fig. 5 shows the photo-z
scatter for the neural network photo-z estimator described in Ap-
pendix A. Here the spectroscopic set has been split into two samples
(the training and validation sets) of equal sizes that were used to
train and validate the network, which was finally applied to compute
photo-zs for the photometric sample. To test the overall quality of the
photo-z estimates we use two photo-z performance metrics, whose
values are also displayed in Fig. 5. The first metric is the photo-z
rms scatter, σ , averaged over all N objects in the photometric set,
defined by

σ 2 = 1

N

N∑
i=1

(
zphot,i − zspec,i

)2
, (28)

whereas the second performance metric, denoted by σ 68, is the
range containing 68 per cent of the photometric set objects in the
distribution of δz = zphot − zspec. We also define similarly σ 68 and
σ 95 in bins of zspec, and the dashed and dotted lines in the left-hand
panel of Fig. 5 show these regions, respectively.

The right-hand panel of Fig. 5 shows the resulting N(zphot) dis-
tribution for the photometric sample (dotted line). Because of de-
generacies in the relation between magnitudes and redshift, the
photo-z estimate is biased at low and high redshifts. In particu-
lar, the photo-z solution produces an excess of galaxies at zphot ≈
0.4, 0.6 and 1.3, which translates into the spurious peaks at these
redshifts in the right-hand panel of Fig. 5. The corresponding mea-
sures of reconstruction quality are (χ 2)zphot = 0.022 and (KS)zphot

= 0.032, significantly worse than those for the weighting method.
Deconvolution of the N(zphot) distribution can improve this match
(Padmanabhan et al. 2005); we will explore that elsewhere (Cunha
et al., in preparation).

For the second training set example, we make the spectroscopic
sample even less representative of the photometric sample. We keep
the spectroscopic i magnitude and type distributions of the previous
example, but we alter the conditional redshift probability P(z|i) of

the training set so that it is more concentrated toward lower redshift
while still covering the redshift range z ∈ [0, 2]. Specifically, we
change the parameter values that determine zd and σd in equations
(5) and (6) to (b1, b2, b3) = (−0.5, 0.6, − 0.5) and (c1, c2, c3) =
(0.38, 0.02, 3.5). By decreasing the values of bi relative to those
of the photometric sample, we shift the distribution toward lower
redshift, while increasing c2 and c3 increases the spread of the dis-
tribution in redshift so that the full range to z = 2 is still covered.
This example could correspond, for instance, to a training set that
is obtained by combining different spectroscopic surveys with dif-
ferent selection functions. Notice that changing only P(z|i) means
that we are changing only one dimension of the probability P(z|m)
which lives in a five-dimensional space of magnitudes. If there are
no further selection effects, we still expect the weighting method to
work reasonably well, though obviously not as accurately as in the
first case of Fig. 5.

In this case, we find that Nnei = 4 neighbours are nearly optimal:
training sets that are less representative require fewer neighbours
to provide the best match, since locality in magnitude/colour space
becomes more important. The redshift distribution of the photo-
metric sample estimated from the weighted training set is shown
in the right-hand panel of Fig. 6. (As in the previous example, the
weighted reconstructions of the magnitude and colour distributions
are nearly perfect, as in Fig. 4, so we do not show them.) Even
though the training-set redshift distribution is now considerably
different from that of the photometric sample, peaking at z ∼ 0.25
as opposed to z ∼ 0.6, the weighting method still does a very good
job of estimation, with (χ 2)T,wei = 0.011 and (KS)T,wei = 0.020.

The left-hand panel of Fig. 6 shows the scatter plot for the neural
network photo-z estimates for this training set; the photo-z scatter is
larger than in the previous example, as expected since the training set
is less representative of the photometric sample. As the right-hand
panel of Fig. 6 also shows, the photo-z distribution has spurious
peaks at the same redshifts as before, but they are now slightly
more pronounced. Although the photo-zs are now more scattered
and the peaks in the photo-z distribution are slightly worse, these
features do not seem to have affected much the median of the
distribution. In fact the KS statistics for the photo-z distribution
(KS)zphot = 0.024 is slightly better than for the previous training set.
In addition (χ 2)zphot = 0.023 is nearly identical to the previous case.
Both statistics however are still worse than those of the weighting
method.
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Figure 7. Distributions of magnitudes (ugriz) and colours (u − g, g − r, r − i, i − z) for samples drawn from SDSS DR6 photometry for the first example in
the text in Section 5.2. Grey regions denote the distributions in the photometric sample, horizontal hatched regions are for the spectroscopic training set and
the black histograms show the reconstructed distributions for the photometric sample using the weighted training set.

5.2 SDSS data catalogues

Here we consider two examples of the reconstruction of the redshift
distribution for photometric samples drawn from the SDSS, using
the spectroscopic samples described in Section 2.2 and shown in
Fig. 2.

For the first case, we created a spectroscopic training set compris-
ing 200 000 galaxies from the SDSS spectroscopic survey, 15 000
from CNOC2, 6000 from the DEEP+DEEP2 sample and 47 000
from 2SLAQ, for a total of 268 000 galaxies. For all these sets, the
galaxies were randomly selected from the parent spectroscopic sam-
ple. The photometric sample comprises the remaining galaxies with
spectroscopic redshifts, namely 5381 galaxies from CNOC2, 1541
from CFRS, 5040 from DEEP+DEEP2, 2078 from DEEP2/EGS,
654 from TKRS and 5762 from 2SLAQ, for a total of 20 456 galax-
ies.

For this example, we calculated weights for the training-set galax-
ies using a hypervolume in colour/r magnitude space with Nnei =
32 neighbours. Fig. 7 shows the magnitude and colour distributions
for the photometric sample, the spectroscopic training set and the
weighted training set. The weighting procedure provides an excel-
lent match to the distributions for the photometric sample. This is not
a difficult test for the method since, with the exception of the SDSS
spectroscopic sample, the distributions for the training and photo-
metric samples are rather similar and by construction equation (23)
is satisfied. The right-hand panel of Fig. 8 shows the corresponding
redshift distributions for these training and photometric samples.

The weighted training set provides a good estimate of N(z) for the
photometric sample, with (χ 2)T,wei = 0.01 and (KS)T,wei = 0.02. The
left-hand panel of Fig. 8 shows the photo-z scatter for the neural net-
work photo-z estimator trained on the same spectroscopic sample
and applied to the photometric sample. The biases at low and high
redshift are evident. The photo-z distribution shown in the right-
hand panel of Fig. 8 provides a less accurate representation of the
true redshift distribution of the photometric sample than the weight-
ing procedure features in the true redshift distribution are smoothed
out, and the distribution is systematically underestimated at high
redshift; the corresponding (χ 2)zphot= 0.12 and (KS)zphot = 0.08 are
again considerably worse than for the weighting procedure.

For the second case, the training set and the photometric sample
come from different spectroscopic surveys. Here, the training set
comprises the galaxies from all the spectroscopic surveys with the
exception of the DEEP2/EGS catalogue, and the latter is taken to be
the photometric sample. The training set contains 286 378 galaxies,
and the photometric sample 2078. Since DEEP2/EGS is – apart from
the match to SDSS photometry – roughly flux limited, this provides
a more realistic case, except for the fact that the photometric sample
in practice would typically be much larger.

In this case, since the training set is much larger than the pho-
tometric sample, the best results are achieved if the weights are
renormalized according to the procedure described in Section 3.4.
However, let us first consider what happens if we do not apply
renormalization and compute the weights only once as in all previ-
ous cases.
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Figure 8. Left-hand panel: scatter of neural network photo-z estimates using the same training set and photometric sample as in Fig. 7. Right-hand panel:
redshift distributions for the photometric sample, spectroscopic training set, weighted training set and photo-zs.

Figure 9. Left-hand panel: neural network photo-z scatter for the second case described in Section 5.2, which uses DEEP2/EGS as the photometric sample
and all other spectroscopic catalogues for the training set. Right-hand panel: redshift distributions for the photometric sample, training set, weighted training
set and photo-z.

Matching both colours and r magnitude is better achieved with
high number of neighbours. The maximum number we chose was
Nnei = 4096, in which case we obtain (χ 2)T,wei = 0.29. On the other
hand, if we only perform the match in colour space, the best results
happen with Nnei = 1 and also produce (χ 2)T,wei = 0.29. In the
first case, we find that the redshift distribution is well reconstructed
at low redshifts, but overestimated at higher redshifts, whereas the
opposite happens in the latter case of matching only the colour
distributions. These features suggest that we employ the following
renormalization procedure described below.

We first calculate the weights by matching the distributions of
colours and magnitudes using Nnei = 4096 neighbours in the train-
ing set. After this first calculation, more than half of the training
set galaxies have zero weights and are removed from the catalogue.
We then iterate the weight calculation by matching only the colour
distributions. In each iteration, we remove objects with zero weight
and reduce Nnei by a factor of 2 until Nnei = 1. Only 7968 of the orig-
inal training-set galaxies have positive weight in the final iteration.
The right-hand panel of Fig. 9 shows the resulting redshift distri-
butions for this case; for the renormalized weighting procedure, the
reconstruction has (χ 2)T,wei = 0.10, while the corresponding photo-
z distribution has (χ 2)zphot = 0.25; likewise (KS)T,wei = 0.03 whereas

(KS)zphot = 0.18. It is clear that the weighting method provides a
better estimate of N(z).

Given the small size of the photometric sample, there is consid-
erable shot noise in its redshift distribution. In addition, the small
angular area of the survey introduces significant LSS effects in
the redshift distribution (see e.g. Mandelbaum et al. 2008). The
weighted reconstruction works well in spite of these complications.

Because we need to go down to Nnei = 1, imposed by the locality
requirement, Poisson errors of individual galaxy weights are rela-
tively large. However, given the large number of galaxies in each
redshift bin, these errors cancel out and the overall reconstruction
is improved.

This case illustrates that this method has the potential to provide
very accurate estimations of the redshift distributions of flux-limited
samples in future galaxy surveys, even when they are subject to LSS
effects.

6 D ISCUSSION

We have presented a new technique to estimate the underlying red-
shift distribution of photometric galaxy samples. The method relies
on a spectroscopic training set and reweighting of the training-set
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galaxies to match the distribution of photometric observables of the
photometric sample. The weights are estimated using a flexible near-
est neighbour approach in colour–magnitude space and the redshift
distribution is estimated by summing the galaxy weights in redshift
bins. Tests on mock catalogues and on existing data sets show that
this procedure yields an accurate estimate of the redshift distribu-
tion and that it performs significantly better than simply binning the
photo-z estimates of individual galaxies in the photometric sample.
The weighting method also appears to be robust, in the sense that
the spectroscopic sample can have very different distributions of
photometric observables and redshift from the photometric sample.
The main requirement is that the training set should span the range
of photometric observables found in the photometric sample.

The key assumption underlying the technique is that two samples
(e.g. the spectroscopic and photometric) with the same distribution
of photometric observables will have very similar redshift distribu-
tions. This assumption holds if the selection criteria used to define
the two samples differ only in the space of photometric observables.
Several effects can cause this condition to be violated: statistical er-
rors, LSS and spectroscopic failures.

Statistical errors are the simplest to quantify and are significant in
regions of magnitude space where the training set is sparse, typically
at fainter magnitudes. LSS can be significant if certain regions of
the space of photometric observables are only represented in the
training set by a survey that covers small solid angle, in which one
or a few large structures dominate. We showed that, even in such
cases, the weighting method works quite well (Section 5.2).

Spectroscopic failures (i.e. targeted objects for which a redshift
could not be obtained) in the training set can have a similar effect if
the failures happen systematically, for instance in a particular galaxy
spectral type. If the effects of spectroscopic failures are prevalent in
regions of magnitude space where the redshift distribution is broad
or multiply peaked, they can potentially cause systematic errors in
the recovery of the redshift distribution. However, we also showed
that the weighting method performs well even when we take an
arbitrary-type distribution in the training set (Section 5.1).

The weighting method requires a training set with a size (density)
such that the inter-(training-set)-galaxy separation in the space of
photometric observables is comparable to the characteristic (cur-
vature) scale of the redshift/photometric-observables manifold or
the scale defined by the typical photometric errors – whichever is
smaller. That condition ensures that on average at least one neigh-
bour to the galaxy is meaningful; in practice it would be safer to
have the density a few times larger than this minimum density. The
use of mock catalogues can shed light on the optimal parameters to
employ on the weighting method, such as the number of neighbours
Nnei (possibly varying according to the local density), the minimum
training set size, the need or not for renormalization etc. Since these
simulations are necessary for other typical calibration reasons, their
need does not put any strong restrictions to the application of the
weighting method. For instance, simulations and calibration sam-
ples are necessary to calibrate the photo-z errors.

This weighting technique has been used to estimate the redshift
distribution of the SDSS DR6 photometric sample (Oyaizu et al.
2008) and to help assess the quality of the photo-zs computed for
that sample. It has also been used in conjunction with photo-zs in the
measurement of the SDSS cluster-mass cross-correlation function
via weak lensing (Sheldon et al. 2007a), allowing for the inversion
of cluster mass profiles (Johnston et al. 2007) and estimation of
cluster mass-richness relations (Johnston et al. 2007) and mass-to-
light ratios (Sheldon et al. 2007b). Finally, this weighting scheme
has recently been employed in the study of galaxy–galaxy weak

lensing calibration bias (Mandelbaum et al. 2008), where it was
shown to yield much smaller biases than those arising from photo-z
estimates. For future photometric surveys, the weighting method
can complement and provides cross-checks on photo-z estimates
and help control photo-z errors.

AC K N OW L E D G M E N T S

We would like to thank Dinoj Surendran and Mark SubbaRao for
useful discussions about nearest neighbour search methods and for
introducing the authors to a fast algorithm using Cover-Trees. This
work was supported by the KICP under NSF No. PHY-0114422 and
NSF PHY-0551142, by NSF grants AST-0239759, AST-0507666
and AST-0708154 at the University of Chicago, by the DOE at the
University of Chicago and Fermilab and by DOE contract number
DE-AC02-07CH11359.

Funding for the SDSS and SDSS-II has been provided by the Al-
fred P. Sloan Foundation, the Participating Institutions, the National
Science Foundation, the US Department of Energy, the National
Aeronautics and Space Administration, the Japanese Monbuka-
gakusho, the Max Planck Society and the Higher Education Funding
Council for England. The SDSS web site is http://www.sdss.org/

The SDSS is managed by the Astrophysical Research Con-
sortium for the Participating Institutions. The Participating
Institutions are the American Museum of Natural History,
Astrophysical Institute Potsdam, University of Basel, University
of Cambridge, Case Western Reserve University, University of
Chicago, Drexel University, Fermilab, the Institute for Advanced
Study, the Japan Participation Group, Johns Hopkins University, the
Joint Institute for Nuclear Astrophysics, the Kavli Institute for Par-
ticle Astrophysics and Cosmology, the Korean Scientist Group, the
Chinese Academy of Sciences (LAMOST), Los Alamos National
Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the
Max-Planck-Institute for Astrophysics (MPA), New Mexico State
University, Ohio State University, University of Pittsburgh, Univer-
sity of Portsmouth, Princeton University, the United States Naval
Observatory and the University of Washington.

Funding for the DEEP2 survey has been provided by NSF grants
AST95-09298, AST-0071048, AST-0071198, AST-0507428 and
AST-0507483 as well as NASA LTSA grant NNG04GC89G.

Some of the data presented herein were obtained at the W. M.
Keck Observatory, which is operated as a scientific partnership
among the California Institute of Technology, the University of
California and the National Aeronautics and Space Administration.
The observatory was made possible by the generous financial sup-
port of the W. M. Keck Foundation. The DEEP2 team and Keck
Observatory acknowledge the very significant cultural role and rev-
erence that the summit of Mauna Kea has always had within the
indigenous Hawaiian community and appreciate the opportunity to
conduct observations from this mountain.

REFERENCES

Banerji M., Abdalla F. B., Lahav O., Lin H., 2008, MNRAS, 386, 1219
Bruzual A. G., Charlot S., 1993, ApJ, 405, 538
Cannon R. et al., 2006, MNRAS, 372, 425
Capak P. et al., 2004, AJ, 127, 180
Coleman G. D., Wu C. C., Weedman D. W., 1980, ApJS, 43, 393
Collister A. A., Lahav O., 2004, PASP, 116, 345
Cowie L. L., Barger A. J., Hu E. M., Capak P., Songaila A., 2004, AJ, 127,

3137

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 118–130



130 M. Lima et al.

Davis M., Newman J. A., Faber S. M., Phillips A. C., 2001, in Cristiani S.,
Renzini A., Williams R. E., eds, ESO Astrophysics Symp. Deep Fields
The DEEP2 Redshift Survey. Springer-Verlag, Berlin, p. 241

Davis M. et al., 2007, ApJ, 660, L1
Huterer D., Kim A., Krauss L. M., Broderick T., 2004, ApJ, 615, 595
Huterer D., Takada M., Bernstein G., Jain B., 2006, MNRAS, 366, 101
Jain B., Connolly A., Takada M., 2007, J. Cosmol. Astropart. Phys., 3, 13
Johnston D. E. et al., 2007, preprint (arXiv:0709.1159)
Lilly S. J., Le Fevre O., Crampton D., Hammer F., Tresse L., 1995, ApJ,

455, 50
Lima M., Hu W., 2007, Phys. Rev. D, 76, 123013
Lin H., Yee H. K. C., Carlberg R. G., Morris S. L., Sawicki M., Patton

D. R., Wirth G., Shepherd C. W., 1999, ApJ, 518, 533
Ma Z., Hu W., Huterer D., 2006, ApJ, 636, 21
Mandelbaum R. et al., 2008, MNRAS, 386, 781
Oyaizu H., Lima M., Cunha C. E., Lin H., Frieman J., Sheldon E. S., 2008,

ApJ, 674, 768
Padmanabhan N. et al., 2005, MNRAS, 359, 237
Poli F. et al., 2003, ApJ, 593, L1
Sheldon E. S. et al., 2004, AJ, 127, 2544
Sheldon E. S. et al., 2007a, preprint (arXiv:0709.1153)
Sheldon E. S. et al., 2007b, preprint (arXiv:0709.1162)
Sheth R. K., 2007, MNRAS, 378, 709
Stabenau H. F., Connolly A., Jain B., 2008, MNRAS, 387, 1215
Weiner B. J. et al., 2005, ApJ, 620, 595
Wirth G. D. et al., 2004, AJ, 127, 3121
Yee H. K. C. et al., 2000, ApJS, 129, 475
Zhan H., 2006, J. Cosmol. Astropart. Phys., 0608, 008
Zhan H., Knox L., 2006, ApJ, 644, 663

APPENDIX A : A RTIFICIAL N EURAL

N E T WO R K PH OTO - zs

For comparison with the weighting method, we use an artificial
neural network (ANN) method to estimate photo-zs (Collister &
Lahav 2004; Oyaizu et al. 2008). We use a particular type of ANN
called a feedforward multilayer perceptron (FFMP), which consists
of several nodes arranged in layers through which signals propagate
sequentially. The first layer, called the input layer, receives the input

photometric observables (magnitudes, colours etc.). The next layers,
denoted hidden layers, propagate signals until the output layer,
whose outputs are the desired quantities, in this case the photo-z
estimate. Following the notation of Collister & Lahav (2004), we
denote a network with k layers and Ni nodes in the ith layer as N1 :
N2: . . . :Nk .

A given node can be specified by the layer it belongs to and the
position it occupies in the layer. Consider a node in layer i and
position α with α = 1, 2, . . . , Ni . This node, denoted Piα , receives
a total input Iiα and fires an output Oiα given by

Oiα = F (Iiα) , (A1)

where F(x) is the activation function. The photometric observables
are the inputs I1α to the first layer nodes, which produce outputs
O1α . The outputs Oiα in layer i are propagated to nodes in the next
layer (i + 1), denoted P(i+1)β , with β = 1, 2, . . . , Ni+1. The total
input I(i+1)β is a weighted sum of the outputs Oiα:

I(i+1)β =
Ni∑

α=1

wiαβOiα, (A2)

where wiαβ is the weight that connects nodes Piα and P(i+1)β . Iterat-
ing the process in layer i + 1, signals propagate from hidden layer
to hidden layer until the output layer. There are various choices for
the activation function F(x) such as a sigmoid, a hyperbolic tangent,
a step function, a linear function etc. This choice typically has no
important effect on the final photo-zs, and different activation func-
tions can be used in different layers. Training the network consists
in finding weights wiαβ that best reproduce the true redshifts zspec in
a spectroscopic validation set.

In our implementation, we use a network configuration Nm : 15 :
15 : 15 : 1, which receives Nm magnitudes and outputs a photo-z.
We use hyperbolic tangent activation functions in the hidden layers
and a linear activation function for the output layer.
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