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Self-calibration of cluster dark energy studies: Counts in cells
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Cluster number counts can constrain the properties of dark energy if and only if the evolution in the
relationship between observable quantities and the cluster mass can be calibrated. Next generation surveys with
~10* clusters will have sufficient statistics to enable some degree of self-calibration. The excess variance of
counts due to the clustering of clusters provides such an opportunity and can be measured from the survey
without additional observational cost. It can minimize the degradation in dark energy constraints due to an
unknown power-law evolution in the mass-observable relation improving constraints on the dark energy equa-
tion of state by a factor of 2 or more to(w)=0.06 for a deep 4000 dégurvey.
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I. INTRODUCTION redshifts. Finally, mild evolution in the mass-observable re-
lation can be calibrated by examining the power spectrum of
The abundance of clusters of galaxies of a known mass ithe clusterd8]. The drawback of the latter method is that
a sensitive probe of linear density fluctuations given Gaussmeasuring the three-dimensional power spectrum generally
ian random initial conditions(e.g., Ref.[1]). Since the requires precise redshifts and hence costly spectroscopy or
growth of fluctuations is halted by the dark energy, abun2n improvement in photometric redshift techniques beyond
dance measurements as a function of redshift can be tran#1at required for abundance studies themselves~0.1).
lated into dark energy constraira,3)]. Here we point out that there is an analogue of the power
Unfortunately, the mass of a cluster is not a direct observSPectrum self-calibration technique that will automatically
able. The key to exploiting this dark energy sensitivity is tocome out of the statistical analysis of the number counts in
determine the relationships between observable quantitiedy given cluster survey. The excess or sample variance of
such as flux or temperature and the masis.initio compu- f[he counts due to the clustering of cI_uste.rs must be mclu_ded
tations from cosmological simulations serve as useful guided! future error analyse®]. For self-calibration purposes, this
but invite misinterpretation when used directly due to miss-Source of “noise” is actually signal and can be used to cali-
ing gas, star formation, and AGN physitsg., Refs[4,5]).  brate the mass observable relation.
Much like with the distance ladder determinations of the
Hubble constant, more progress can be made by cross cali- ll. NOISE AS SIGNAL
T e o o . The prcabity of measing  umber ofcust
P = . cell of a given redshifz and angular extent is given by the
cross calibration makes the interpretation of each data Sgoisson distribution
subject to the systematic errors in all of the surveys em-
ployed and so the weakest link in the chain. Cross calibration mN
can also only be performed across the redshift and mass P(N|m)= We‘m, (&N
range where surveys overlap. :
Recently, self-calibration techniqL_les have bee_n advocateghere the meam=(N)p and the brackets denote averaging
as a useful check on cross ca_l|bra_1t|0n and the mterna_\l COMsver realizations of the Poisson process.
S|st9ncy of dark energy deygrmlnatlons.. Clusters benefit f.rom Now take a set of cells indexed hiywhere the mean
havmg several mass-sensitive properties that can be re“_abhlumbermi fluctuates in space,
predicted from simulations of their dark matter properties
only. The first of course is the evolution of the abundance 3
itself. An unknown constant normalization of the mass- mi:f d>xW(x)n(x;z), )
observable relation can be determined from the evolution in
the abundance above threshold in the given obsenj@le whereW,(x) is the cell window function, in this case a top
Even an arbitrarily evolving normalization can be deter-hat, andn(x;z) is the spatial number density. On large
mined by measuring the abundance as a function of thecales, fluctuations in their spatial number density trace the
threshold and redshiff7]. This technique, however, requires linear density fluctuation$(x;z) from the large scale struc-
a dynamic range in the mass function that is substantiallyure of the Universe,
larger than the scatter in the mass-observable relation and o
will only be possible with very deep surveys or at fairly low n(x;z)=n(z)[1+b(z) 8(x;2)], 3)
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whereb is the linear bias of the clusters. Overbars denote anass(see Sec. IY. From the perspective of mass calibration
spatial average or a sample average over realizations of thmoth ingredients are therefore signal.
large scale structure. Thus the sample averaged number

countsm;=V,n(z) where the cell volume i¥,=[d3xW, . IIl. FISHER MATRIX

The mean numbers then possess a sample covariance ) ) _ ) )
given by the linear power spectrur(k) [9], The Fisher matrix formalism provides a means of making
projections for the result of likelihood analyses of future data

Sij=((mj—m;)(m;—m;))s given a parametrized model for the meanand sample co-
varianceS of the counts as well as a fiducial choice of the

bimbym; [ d%k true parameters.
YA f (277_)3Wi*(k)wj(k)P(k)- 4 Given a set of parameters, on which these quantities

depend, the information is quantified by the Fisher matrix
Here W;(k) is the Fourier transform ofW,(x) and b;
=Db(z). For a single spherical cell of comoving radidsthe . < #InL >
fractional errorsSt’m;=h;or where o is the rms linear B\ 9pLdpg
density fluctuation in the cell.
The likelihood of drawing a set of cluster counté  such that the parameter covariance ma@ixs~(F 1) ,z.
—(Ny, ... Ng) given a model fom=(m,, ...,m,) andS  The marginalized parameter errors are toep,)=Cy?.
is then Again let us begin by considering the limiting cases. In
the case of negligible sample covariance

(10

G(mm,S), (5

o4
L(N|n_1,S)=fd°m[H P(N;|m)) 1
=1 Faﬁ=2 :mi,ami'l;:mfaM‘lm,B, (11
1 mi

whereG denotes the multivariate Gaussian distribution,
where commas denote partial derivatives with respegt,to

o 1 m)s~ 1(m—m) 10]. In the case of negligible Poisson errdid]
G(mm,S)= e~ (1m-m)s im-m) (g [10]. glig
| V(2m)CdetS
— — 1
It is instructive to consider a few special cases. In the Fap=m,S 'm g+ ETr[S_ls,aS_lS,ﬁ]- (12

limit that sample variance is neghglble compared with the
Poisson varianc&; <m; (satisfied asn,—0) the Gaussian Notice that even in then,>1 Gaussian limit, the Poisson

approximates a delta function and Fisher matrix does not carry a term involving the derivatives
c of the varianceM ,. However, the fractional error induced
L(Nlm.S)*iH P(N;|m). @) by including such a term scales ag 1 and is therefore

negligible in this limit.

) ) ) _ ~ Given these two limits, we approximate the full Fisher
This form is appropriate for very rare clusters and is used ifmatrix as

the analysis of local high-temperature clusters.

In the limit of large numbers;>1, the Poisson distribu- . _ 1
tion approaches a Gaussian, Fap=m,C'm g+ ETr[C*SﬂCﬂSﬁ], (13
C
Hl P(N;|m;)~G(N|m,M), (8)  where recallC=S+M. The two pieces represent the contri-
=

bution to the information on the parameters from the mean of
the cell counts and their cell-to-célto)variance induced by

whereM =diag(m;). The likelihood becomes a convolution . .
structure in the Universe.

of Gaussians

L(N|E,S)~f d°mG(N|m,M)G(m|rF,S), 9) IV. SELF-CALIBRATION

The two sources of information, the mean counts and their
or via the convolution theorem approximately a Gaussian ircell-to-cell variance, depend differently on the cluster mass.
N—m with covarianceC=S+ M. By comparing the two one can in principle solve for the mass

The statistical properties of the counts are hence specme@nd hence remove the calibration uncertainty in the interpre-

Y thelr mear an eir sample covarian € space Given an initial power spectrum simulations can reliably

density n(z) controlsm and hence the *signal;” the bias predict the number density of dark matter halos associated
b(z) controlsS and hence the “noise.” Given a cosmology, with clusters of a given mass. For illustrative purposes, we
both n andb can be predicted as a function of the clusterwill employ the fitting function[12]
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dn mdino? . .
m—o.%mexq—“n(r +0.64 2],
(14

whereaz(M;z)Eoé(z), the density field variance in a re-
gion enclosingM =47R3p,/3 at the mean matter density
today p,,. Likewise the bias of these objects can be de-
scribed by[ 13,14

asio’—1 2p. e ]
5‘: i 5(;[1"'(35(2:/0'2)2] (15) 10'2 1013 1014 1015

b(M;z)=1+

with a=0.75,p.=0.3, andé.=1.69. Though these relations FIG. 1. M itivity of th is and thei .
must be replaced by numerical results in a real analysis, self-are p \./vith S::SsitisveitnSIt(I)VItgeOdarlf :ggrn S Zmuati ;I]r ;/falztgﬂrlgfzcom-
calibration will still be possible so long as the bias and mea y 9y €q

number counts scale with the mass of the objects in a prefo. The integral of the mass functiam/d In M, here normalized

- to My=10""1M from the thresholdM, predicts the expected
dictable way. nts. Changes in counts duewia(solid vs dashed lingscan b
Consider now a selection that is defined by a threshold jifounts. ~hanges in counts duewiaisolid vs dashed ingcan be
: compensated by a comparable shiftNty, (dark vs light shaded
some observable quantifysuch as flux or temperature. Let . . .
tri th lati hip bet th b blreglor) but also change the fractional cell variance at threshold
us parametrize -the refationsnip evv_een € observa &orizontal lineg, shown here normalized to the typical cell volume
thresholdfy, and the mass threshold with a two-parameter(smq Mpc radiug asb?2,.
power law[8]. To keep the Fisher matrix analysis applicable %0
to an arbitrary observableand potentially large fractional o . ]
variations in the mass calibration, let us choose the paramtinderlying linear structure but also makes objects at a fixed

etersA andn, to define the mass-observable relation as ~ Mass rarer and hence more highly biased.
We approximate the results of a joint likelihood analysis

of the mass-observable and cosmological parameters via the
Fisher matrix. We take six cosmological parameters: the nor-
malization of the initial curvature spectrund,(=5.07
where fo is an arbitrary fiducial normalization parameter, x 10°) atk=0.05 Mpc ! (see Ref[15] for its relationship
Mo(2z) characterizes am priori guess for the relation such to the more traditionatrg normalization, its tilt n(=1), the
that deviations can be described by a power law ir-£], baryon densityQ,h?(=0.024), the dark matter density
andp i; considered knowpsee Ref[7] for a generali'zayion 0, .h?(=0.14), and the two dark energy parameters of inter-
to arbitrary p(z)]. Thus A and n, parametrize deviations ;- jts density),c(=0.73) relative to critical and equation
fiom a p flxeq mass-observable re.Iat|o.nM t/ MO(.Z) of statew(= —1) which we assume to be constant. Values in
I;ié:;tgll’ fgq)air;’)\:hﬁgt\évethtgte%tf‘hk: Iiss :: gggsg:smvg?jég;fﬁe the fiducial cosmology are given in parentheses. The first
) - o . o four parameters have already been determined at the few to
and f, need not be explicitly specified since variations are; 004 evel through the CMB16] and we will extrapolate

taken about the fiducial model. : . . )
The statistical model of the counts is then defined througi]ihese constraints into the future with priors ofIn 9)

M
Mo(2)

p
=eA(1+z)“A(m> : (16)
fo

Eqs(3) and (4), :O'(I']):.G'(m Q?hZ)ZO'(lﬂ thz):001 . -
For illustrative purposes let us take a fiducial cluster sur-
_ w dn vey with specifications similar to the planned South Pole
n(z)=J dinM 5w Telescope(SPT) survey: an area of 4000 degnd a sensi-
In Mun(2) tivity corresponding to a constant My=M g

_ =10"%"M, . We divide the number counts into bins of
b(z)= 1[”’ dinM dn b(M:2). (17) redshiftA_z=0.1 and_4OO angular cells of 10 c?ggnd vary
In My(2) dinM the maximum redshifi,,,, for which photometric redshifts
will be available. With these large cell sizes, the covariance
In reality the mass-observable relation will contain finite between neighboring cells is negligible, considerably simpli-
scatter which will blur the threshold; this scatter must also bdying the analysis.
modeled in a real analysis. We use this simple prescription Constraints in th&€)pe—w dark energy plane from counts
for illustrative purposes only. alone are severely compromised by mass threshold uncer-
Figure 1 illustrates the self-calibration idea. If only the tainties(see Fig. 2. This is especially true for the lowep,
counts are considered, changes in the cosmology are degesince the lever arm is not sufficient to distinguish between
erate with those in the threshold. However, lowering thethe power-law deviations in the mass-observable relation and
threshold to compensate a smaller amplitude of density flucthe dark energy. Here the errors(y,e degrade by factor of
tuations has two effects on the variance of counts that break7 andw by a factor of 4.6. Much of the dark energy infor-
the degeneracy: it lowers the variance due to the decreasadation is restored by including variance information. For

n
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[ L relatively insensitive to the mass threshold assumed. Finally
(@) Zmax=1 ] errors on the actual calibration parameters areA)
] =0(ny)=0.14 for ;= 2.

-0.81 A V. DISCUSSION

2 ] Cluster number count surveys contain information not
] only in the mean counts but also in their cell-to-cell variance.
-09r- 1 The latter depends on the clustering of clusters and hence
] provides an independent constraint on their mass. This infor-
‘ 1 mation automatically comes out of a full likelihood analysis
, . ] of the counts and provides an opportunity for self-calibration
' I:I comtsonly 1 of the survey. _
B counts+variance In the idealized case where the scatter in the mass-
B fixed My, ob;ervablg relation is low and known, self—c_al|brat|on via the
variance improves dark energy constraints for a two-
parameter power-law evolution in the mass threshold by a
= factor of 2—10 depending mainly on the maximum redshift
for which accurate photometric redshifts can be obtained. In
0.9r 5 principle, self-calibration can constrain a more arbitrary evo-
lution, e.g., an independent mass-observable relation for each
\ redshift slice. In practice, the resulting dark energy con-

. ! straints are then too weak to be of interes{{)pg) =0.07,
0.6 0.8 1.0 1.2 Es{Qoe)

07T (b) Zmax=2

o(w)=0.57 in the fiducial survely Likewise, for an un-
Qpg known scatter in the mass-observable relation, variance self-
calibration alone is unlikely to suffice. In these cases it can
be supplemented with selections at various thresholds in the
Zo=1 and (b) zy,=2. Unknown power-law evolution in the observabld 7] or with the full angular power spectra of the
mass-observable relation degrades constraints from the inner mog?" counts(e.g.,. Ref[15]) though a full treatment is beyond

to outermost ellipses if only the abundance or counts is used. B{€ Scope of this work.

adding in information from the count variance, the survey partially Since self-calibration involves only information which ex-
self-calibrates leading to the middle ellipses. ists in the survey itself, it comes at no additional observa-

tional cost. It therefore complements potentially more pre-
cise but costly cross-calibration studies.

FIG. 2. Projected constraints in tlf&,z—w dark energy plane
(68% CL for the fiducial survey and a maximum redshift @

Zmax=1, errors improve by a factor of 7.5 to(Qpg)
=0.04 and a factor of 2 to-(w)=0.09.

Self-calibration also makes the errors more robust to
Zmaxs O Zma=2, 0(Qpe)=0.03 ando(w)=0.06. These We thank A. Kravtsov and J. Mohr for useful discussions.
results are also relatively insensitive to the cell size. FofThis work was supported by NASA Contract No. NAG5-
4 ded cells orAz=0.05 the errors remain nearly the same.10840, the DOE, the Packard Foundation, and CNPq; it was
Likewise, the relative improvement due to self-calibration iscarried out at the CfCP under NSF Grant No. PHY-0114422.
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