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Self-calibration of cluster dark energy studies: Counts in cells
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Cluster number counts can constrain the properties of dark energy if and only if the evolution in the
relationship between observable quantities and the cluster mass can be calibrated. Next generation surveys with
;104 clusters will have sufficient statistics to enable some degree of self-calibration. The excess variance of
counts due to the clustering of clusters provides such an opportunity and can be measured from the survey
without additional observational cost. It can minimize the degradation in dark energy constraints due to an
unknown power-law evolution in the mass-observable relation improving constraints on the dark energy equa-
tion of state by a factor of 2 or more tos(w)50.06 for a deep 4000 deg2 survey.
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I. INTRODUCTION

The abundance of clusters of galaxies of a known mas
a sensitive probe of linear density fluctuations given Gau
ian random initial conditions~e.g., Ref. @1#!. Since the
growth of fluctuations is halted by the dark energy, abu
dance measurements as a function of redshift can be tr
lated into dark energy constraints@2,3#.

Unfortunately, the mass of a cluster is not a direct obse
able. The key to exploiting this dark energy sensitivity is
determine the relationships between observable quant
such as flux or temperature and the mass.Ab initio compu-
tations from cosmological simulations serve as useful gui
but invite misinterpretation when used directly due to mi
ing gas, star formation, and AGN physics~e.g., Refs.@4,5#!.
Much like with the distance ladder determinations of t
Hubble constant, more progress can be made by cross
brating the mass-observable relations between x-ray, lens
optical, and microwave surveys. A potential drawback is t
cross calibration makes the interpretation of each data
subject to the systematic errors in all of the surveys e
ployed and so the weakest link in the chain. Cross calibra
can also only be performed across the redshift and m
range where surveys overlap.

Recently, self-calibration techniques have been advoc
as a useful check on cross calibration and the internal c
sistency of dark energy determinations. Clusters benefit f
having several mass-sensitive properties that can be reli
predicted from simulations of their dark matter propert
only. The first of course is the evolution of the abundan
itself. An unknown constant normalization of the mas
observable relation can be determined from the evolution
the abundance above threshold in the given observable@6#.
Even an arbitrarily evolving normalization can be det
mined by measuring the abundance as a function of
threshold and redshift@7#. This technique, however, require
a dynamic range in the mass function that is substanti
larger than the scatter in the mass-observable relation
will only be possible with very deep surveys or at fairly lo
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redshifts. Finally, mild evolution in the mass-observable
lation can be calibrated by examining the power spectrum
the clusters@8#. The drawback of the latter method is th
measuring the three-dimensional power spectrum gene
requires precise redshifts and hence costly spectroscop
an improvement in photometric redshift techniques beyo
that required for abundance studies themselves (Dz'0.1).

Here we point out that there is an analogue of the pow
spectrum self-calibration technique that will automatica
come out of the statistical analysis of the number counts
any given cluster survey. The excess or sample varianc
the counts due to the clustering of clusters must be inclu
in future error analyses@9#. For self-calibration purposes, thi
source of ‘‘noise’’ is actually signal and can be used to ca
brate the mass observable relation.

II. NOISE AS SIGNAL

The probability of measuring a number of clustersN in a
cell of a given redshiftz and angular extent is given by th
Poisson distribution

P~Num!5
mN

N!
e2m, ~1!

where the meanm[^N&P and the brackets denote averagi
over realizations of the Poisson process.

Now take a set of cells indexed byi where the mean
numbermi fluctuates in space,

mi5E d3xWi~x!n~x;zi !, ~2!

whereWi(x) is the cell window function, in this case a to
hat, andn(x;zi) is the spatial number density. On larg
scales, fluctuations in their spatial number density trace
linear density fluctuationsd(x;z) from the large scale struc
ture of the Universe,

n~x;z!5n̄~z!@11b~z!d~x;z!#, ~3!
©2004 The American Physical Society04-1
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whereb is the linear bias of the clusters. Overbars denot
spatial average or a sample average over realizations o
large scale structure. Thus the sample averaged num
countsm̄i5Vin̄(zi) where the cell volume isVi[*d3xWi .

The mean numbers then possess a sample covari
given by the linear power spectrumP(k) @9#,

Si j 5^~mi2m̄i !~mj2m̄j !&S

5
bim̄ibjm̄j

ViVj
E d3k

~2p!3 Wi* ~k!Wj~k!P~k!. ~4!

Here Wi(k) is the Fourier transform ofWi(x) and bi
5b(zi). For a single spherical cell of comoving radiusR, the
fractional errorsSii

1/2/m̄i5bisR wheresR is the rms linear
density fluctuation in the cell.

The likelihood of drawing a set of cluster countsN
5(N1 , . . . ,Nc) given a model form̄5(m̄1 , . . . ,m̄c) andS
is then

L~Num̄,S!5E dcmF)
i 51

c

P~Ni umi !GG~mum̄,S!, ~5!

whereG denotes the multivariate Gaussian distribution,

G~mum̄,S!5
1

A~2p!cdetS
e2(1/2)(m2m̄)S21(m2m̄). ~6!

It is instructive to consider a few special cases. In
limit that sample variance is negligible compared with t
Poisson varianceSii !m̄i ~satisfied asm̄i→0) the Gaussian
approximates a delta function and

L~Num̄,S!')
i 51

c

P~Ni um̄i !. ~7!

This form is appropriate for very rare clusters and is used
the analysis of local high-temperature clusters.

In the limit of large numbersmi@1, the Poisson distribu
tion approaches a Gaussian,

)
i 51

c

P~Ni umi !'G~Num,M !, ~8!

whereM5diag(mi). The likelihood becomes a convolutio
of Gaussians

L~Num̄,S!'E dcmG~Num,M !G~mum̄,S!, ~9!

or via the convolution theorem approximately a Gaussian
N2m̄ with covarianceC[S1M̄ .

The statistical properties of the counts are hence spec
by their meanm̄ and their sample covarianceS. The space
density n̄(z) controls m̄ and hence the ‘‘signal;’’ the bias
b(z) controlsS and hence the ‘‘noise.’’ Given a cosmolog
both n̄ and b can be predicted as a function of the clus
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mass~see Sec. IV!. From the perspective of mass calibratio
both ingredients are therefore signal.

III. FISHER MATRIX

The Fisher matrix formalism provides a means of mak
projections for the result of likelihood analyses of future da
given a parametrized model for the meanm̄ and sample co-
varianceS of the counts as well as a fiducial choice of th
true parameters.

Given a set of parameterspa on which these quantities
depend, the information is quantified by the Fisher matrix

Fab[2 K ]2ln L

]pa]pb
L ~10!

such that the parameter covariance matrixCab'(F21)ab .
The marginalized parameter errors are thens(pa)5Caa

1/2 .
Again let us begin by considering the limiting cases.

the case of negligible sample covariance

Fab5(
i

1

m̄i

m̄i ,am̄i ,b5m̄,a
t M̄21m̄,b , ~11!

where commas denote partial derivatives with respect topa
@10#. In the case of negligible Poisson errors@11#

Fab5m̄,a
t S21m̄,b1

1

2
Tr@S21S,aS21S,b#. ~12!

Notice that even in themi@1 Gaussian limit, the Poisso
Fisher matrix does not carry a term involving the derivativ
of the varianceM ,a . However, the fractional error induce
by including such a term scales asmi

21 and is therefore
negligible in this limit.

Given these two limits, we approximate the full Fish
matrix as

Fab5m̄,a
t C21m̄,b1

1

2
Tr@C21S,aC21S,b#, ~13!

where recallC5S1M̄ . The two pieces represent the cont
bution to the information on the parameters from the mean
the cell counts and their cell-to-cell~co!variance induced by
structure in the Universe.

IV. SELF-CALIBRATION

The two sources of information, the mean counts and th
cell-to-cell variance, depend differently on the cluster ma
By comparing the two one can in principle solve for the ma
and hence remove the calibration uncertainty in the interp
tation of the number counts.

Given an initial power spectrum, simulations can reliab
predict the number density of dark matter halos associa
with clusters of a given mass. For illustrative purposes,
will employ the fitting function@12#
4-2
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dn̄

d ln M
50.3

rm

M

d ln s21

d ln M
exp@2u ln s2110.64u3.82#,

~14!

wheres2(M ;z)[sR
2(z), the density field variance in a re

gion enclosingM54pR3rm/3 at the mean matter densit
today rm . Likewise the bias of these objects can be d
scribed by@13,14#

b~M ;z!511
adc

2/s221

dc
1

2pc

dc@11~adc
2/s2!c

p#
~15!

with a50.75,pc50.3, anddc51.69. Though these relation
must be replaced by numerical results in a real analysis, s
calibration will still be possible so long as the bias and me
number counts scale with the mass of the objects in a
dictable way.

Consider now a selection that is defined by a threshold
some observable quantityf such as flux or temperature. Le
us parametrize the relationship between the observ
threshold f th and the mass threshold with a two-parame
power law@8#. To keep the Fisher matrix analysis applicab
to an arbitrary observablef and potentially large fractiona
variations in the mass calibration, let us choose the par
etersA andnA to define the mass-observable relation as

M th

M0~z!
5eA~11z!nAS f th

f 0
D p

, ~16!

where f 0 is an arbitrary fiducial normalization paramete
M0(z) characterizes ana priori guess for the relation suc
that deviations can be described by a power law in (11z),
andp is considered known@see Ref.@7# for a generalization
to arbitrary p(z)]. Thus A and nA parametrize deviations
from a fixed mass-observable relation,M th /M0(z)
5( f th / f 0)p, which we then take as the fiducial model in th
Fisher matrix. Note that in the Fisher analysis values fop
and f 0 need not be explicitly specified since variations a
taken about the fiducial model.

The statistical model of the counts is then defined throu
Eqs.~3! and ~4!,

n̄~z!5E
ln M th(z)

`

d ln M
dn̄

d ln M
,

b~z!5
1

n̄
E

ln M th(z)

`

d ln M
dn̄

d ln M
b~M ;z!. ~17!

In reality the mass-observable relation will contain fin
scatter which will blur the threshold; this scatter must also
modeled in a real analysis. We use this simple prescrip
for illustrative purposes only.

Figure 1 illustrates the self-calibration idea. If only th
counts are considered, changes in the cosmology are de
erate with those in the threshold. However, lowering
threshold to compensate a smaller amplitude of density fl
tuations has two effects on the variance of counts that br
the degeneracy: it lowers the variance due to the decre
04350
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underlying linear structure but also makes objects at a fi
mass rarer and hence more highly biased.

We approximate the results of a joint likelihood analys
of the mass-observable and cosmological parameters via
Fisher matrix. We take six cosmological parameters: the n
malization of the initial curvature spectrumdz(55.07
31025) at k50.05 Mpc21 ~see Ref.@15# for its relationship
to the more traditionals8 normalization!, its tilt n(51), the
baryon densityVbh2(50.024), the dark matter densit
Vmh2(50.14), and the two dark energy parameters of int
est: its densityVDE(50.73) relative to critical and equatio
of statew(521) which we assume to be constant. Values
the fiducial cosmology are given in parentheses. The fi
four parameters have already been determined at the fe
10% level through the CMB@16# and we will extrapolate
these constraints into the future with priors ofs(ln dz)
5s(n)5s(ln Vbh

2)5s(ln Vmh2)50.01.
For illustrative purposes let us take a fiducial cluster s

vey with specifications similar to the planned South P
Telescope~SPT! survey: an area of 4000 deg2 and a sensi-
tivity corresponding to a constant M05M thufid
51014.2h21M ( . We divide the number counts into bins o
redshiftDz50.1 and 400 angular cells of 10 deg2 and vary
the maximum redshiftzmax for which photometric redshifts
will be available. With these large cell sizes, the covarian
between neighboring cells is negligible, considerably simp
fying the analysis.

Constraints in theVDE2w dark energy plane from count
alone are severely compromised by mass threshold un
tainties~see Fig. 2!. This is especially true for the lowerzmax
since the lever arm is not sufficient to distinguish betwe
the power-law deviations in the mass-observable relation
the dark energy. Here the errors inVDE degrade by factor of
37 andw by a factor of 4.6. Much of the dark energy info
mation is restored by including variance information. F

FIG. 1. Mass sensitivity of the counts and their variance co
pared with sensitivity to the dark energy equation of statew at z

50. The integral of the mass functiondn̄/d ln M, here normalized
to M051014h21M ( from the thresholdM th predicts the expected
counts. Changes in counts due tow ~solid vs dashed lines! can be
compensated by a comparable shift inM th ~dark vs light shaded
region! but also change the fractional cell variance at thresh
~horizontal lines!, shown here normalized to the typical cell volum
(50h21 Mpc radius! asb2s50

2 .
4-3
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zmax51, errors improve by a factor of 7.5 tos(VDE)
50.04 and a factor of 2 tos(w)50.09.

Self-calibration also makes the errors more robust
zmax, for zmax52, s(VDE)50.03 ands(w)50.06. These
results are also relatively insensitive to the cell size. F
4 deg2 cells orDz50.05 the errors remain nearly the sam
Likewise, the relative improvement due to self-calibration

FIG. 2. Projected constraints in theVDE2w dark energy plane
~68% CL! for the fiducial survey and a maximum redshift of~a!
zmax51 and ~b! zmax52. Unknown power-law evolution in the
mass-observable relation degrades constraints from the inner
to outermost ellipses if only the abundance or counts is used
adding in information from the count variance, the survey partia
self-calibrates leading to the middle ellipses.
oc

n.

04350
o

r
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relatively insensitive to the mass threshold assumed. Fin
errors on the actual calibration parameters ares(A)
5s(nA)50.14 forzmax52.

V. DISCUSSION

Cluster number count surveys contain information n
only in the mean counts but also in their cell-to-cell varian
The latter depends on the clustering of clusters and he
provides an independent constraint on their mass. This in
mation automatically comes out of a full likelihood analys
of the counts and provides an opportunity for self-calibrat
of the survey.

In the idealized case where the scatter in the ma
observable relation is low and known, self-calibration via t
variance improves dark energy constraints for a tw
parameter power-law evolution in the mass threshold b
factor of 2–10 depending mainly on the maximum redsh
for which accurate photometric redshifts can be obtained
principle, self-calibration can constrain a more arbitrary ev
lution, e.g., an independent mass-observable relation for e
redshift slice. In practice, the resulting dark energy co
straints are then too weak to be of interest@s(VDE)50.07,
s(w)50.57 in the fiducial survey#. Likewise, for an un-
known scatter in the mass-observable relation, variance s
calibration alone is unlikely to suffice. In these cases it c
be supplemented with selections at various thresholds in
observable@7# or with the full angular power spectra of th
cell counts~e.g., Ref.@15#! though a full treatment is beyon
the scope of this work.

Since self-calibration involves only information which e
ists in the survey itself, it comes at no additional obser
tional cost. It therefore complements potentially more p
cise but costly cross-calibration studies.
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