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The ability to constrain dark energy from the evolution of galaxy cluster counts is limited by the
imperfect knowledge of cluster redshifts. Ongoing and upcoming surveys will mostly rely on redshifts
estimated from broadband photometry (photo-z’s). For a Gaussian distribution for the cluster photo-z
errors and a high cluster yield cosmology defined by the WMAP 1 year results, the photo-z bias, and
scatter needs to be known better than 0.003 and 0.03, respectively, in order not to degrade dark energy
constrains by more than 10% for a survey with specifications similar to the South Pole Telescope. Smaller
surveys and cosmologies with lower cluster yields produce weaker photo-z requirements, though relative
to worse baseline constraints. Comparable photo-z requirements are necessary in order to employ self-
calibration techniques when solving for dark energy and observable-mass parameters simultaneously. On
the other hand, self-calibration in combination with external mass inferences helps reduce photo-z
requirements and provides important consistency checks for future cluster surveys. In our fiducial model,
training sets with spectroscopic redshifts for �5%–15% of the detected clusters are required in order to
keep degradations in the dark energy equation of state lower than 20%.
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I. INTRODUCTION

The abundance of clusters of galaxies as a function of
their mass and redshift is potentially a powerful cosmo-
logical probe. The sensitivity to the underlying cosmology
comes from the dependence of the abundance on the
comoving volume element and, more importantly, from
the exponential sensitivity of the cluster mass function to
the amplitude of linear density perturbations. Both of these
features depend upon the matter content of the Universe
and the underlying theory of gravity. Possible applications
include constraints on theories of modified gravity [1],
neutrino masses [2], the total matter density �m, and the
amplitude of linear fluctuations �8 [3,4]. Furthermore,
cluster counts as a function of redshift offer a promising
technique to explore and constrain dark energy parameters
because of the suppression in the growth of perturbations
during the acceleration epoch. In practice these studies are
done by comparing observations to theoretical predictions
from simulations as a function of cosmology.

However, there are many observational challenges to the
use of clusters to constrain cosmology. First, there are
different techniques of cluster detection, each one attempt-
ing to obtain cluster samples as complete and clean as
possible. Typical cluster finding methods explore signals
such as the Sunyaev-Zel’dovich (SZ) flux decrement, x-ray
temperature, x-ray surface brightness, overdensities in
space and color from optical observations, and the weak
lensing shear. When comparing the properties of the ob-
served samples to simulation predictions, knowledge of the
selection function is essential since observational effects

particular to each cluster finder need to be properly ac-
counted for.

Next, cluster masses must be estimated in ways that may
or may not be tied to the cluster finder employed. In
general, the mass is not a direct observable and needs to
be obtained through the relation between an observable
proxy and mass, the observable-mass relation.
Uncertainties in mass conversion can lead to degenerate
effects that destroy most of the information in cluster
counts if not well calibrated.

In order to overcome this degeneracy a set of so-called
self-calibration techniques has been developed recently.
By requiring consistency between number counts and other
cluster properties, it is possible to solve simultaneously for
cosmology and observable-mass parameters. This can be
accomplished by follow-up of a small cluster sample [5],
by using information on the clustering properties of clus-
ters from their power spectrum [5] or their sample covari-
ance from counts in cells [6,7], and by using information
from the shape of the observed mass function [7,8].
Another approach uses physical models of cluster structure
[9] which is similar in spirit to imposing priors on
observable-mass parameters. Combining these approaches
allows for tests of the assumptions underlying the individ-
ual approaches.

Finally, cluster redshifts must be estimated. Whereas
spectroscopic redshifts are very accurate, when dealing
with large data sets it becomes impractical to obtain spec-
tra for large fractions of objects. Alternatively redshifts can
be estimated from broadband photometry in a finite num-
ber of filter band-passes (see e.g. [10] and references
therein). Photometry can be viewed as a coarse spectros-
copy that probes the most prominent spectral features as*mvlima@uchicago.edu
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they move from their rest positions when the object of
interest is redshifted. Redshifts thus estimated, known as
photometric redshifts (photo-z’s), can be efficiently calcu-
lated for millions of objects and can use not only colors but
any observable that correlates with redshift [11].

Since the interpretation of the counts depends sensi-
tively on an accurate determination of the redshift distri-
bution of the clusters and not on the redshift precision for
an individual cluster, photo-z’s are well suited to such
studies. Clusters detected by the SZ effect, for instance,
will typically be followed up optically so that photo-z’s can
be calculated. Optical cluster finding algorithms can
choose to derive photo-z’s during the cluster finding pro-
cess itself [12,13] or use externally derived photo-z’s
[14,15] with different implications for the propagation of
photo-z errors.

In this paper, we study how the knowledge of the cluster
photo-z error distribution can affect the ability to use
cluster counts to constrain dark energy. Previous works
have addressed this question for different cosmological
probes, including cluster counts [16], supernova [16],
baryon acoustic oscillations [17,18], and weak lensing
tomography [19,20]. In particular, Huterer et al. [16]
studied the effect of systematic shifts in centroids of red-
shift bins on cosmological constraints, in the context of
perfect knowledge of cluster masses. Here we generalize
that analysis by considering the full redshift error distribu-
tion and allowing redshift bias and scatter parameters to be
arbitrary functions of redshift. We also consider the photo-
z requirements necessary for self-calibration of the
observable-mass relation when one is simultaneously solv-
ing for cluster masses and cosmology.

We start in Secs. II and III describing how redshift errors
affect cluster number counts and their sample covariance,
respectively. In Sec. IV we describe the fiducial models
assumed and the Fisher matrix formalism, which is em-
ployed in Sec. V to study how redshift errors degrade dark
energy constraints in various cases of interest. Finally, in
Sec. VI we discuss the results and conclude.

II. NUMBER COUNTS

For a given cosmology, simulations predict the comov-
ing number density of dark matter halos as a function of
mass and redshift. For illustrative purposes, we will iden-
tify these halos with clusters and employ a fit to simula-
tions for the halo differential comoving number density
[21]

 

d �n
d lnM

� 0:3
�m
M

d ln��1

d lnM
exp��j ln��1 � 0:64j3:82�;

(1)

where �2�M; z� 	 �2
R�z�, the linear density field variance

in a region enclosing M � 4�R3�m=3 at the mean matter
density today �m. Because shifts in cluster masses can
modify cluster counts mimicking a change in cosmology,

the exponential sensitivity to � will only be a benefit in
practice if the observable-mass distribution is also well
known. Fortunately observations and simulations suggest
observable-mass scaling relations that can be parametrized
in simple forms and allow for a reasonable degree of
calibration [22–24]. Following [7], we take the probability
of assigning a mass Mobs to a cluster of true mass M to be
given by a Gaussian distribution in lnM

 p�MobsjM� �
1����������������

2��2
lnM

q exp��x2�Mobs��; (2)

where

 x�Mobs� 	
lnMobs � lnM� lnMbias�������������

2�2
lnM

q : (3)

For simplicity, we will allow the mass bias lnMbias and
the variance �2

lnM to vary with redshift but not mass. The
redshift dependent average number density of clusters
within the observable mass range Mobs

� 
 Mobs 
 Mobs
��1

is given by

 

�n ��z� 	
Z Mobs

��1

Mobs
�

dMobs

Mobs

Z dM
M

d �n
d lnM

p�MobsjM�

�
Z dM

M
d �n
d lnM

1

2
�erfc�x�� � erfc�x��1��; (4)

where x� � x�Mobs
� �. Notice that this corresponds to the

cumulative number density above some sharp mass thresh-
old in the limit that �2

lnM ! 0 and Mobs
��1 ! 1. The mean

number of clusters is then obtained by integrating the mean
number density in the redshift dependent comoving vol-
ume element d3x. Let us use spherical coordinates to
parametrize the spatial position vector as x � �r; �; ��,
where r�z� is the angular diameter distance to redshift z
and ��;�� parametrize the solid angle � such that d� �
sin�d�d�. Since we will only consider flat cosmologies,
r�z� coincides with the comoving distance. The volume
element is given by

 d3x � r2drd� �
r2�z�
H�z�

dzd�; (5)

where H�z� is the Hubble parameter to redshift z. Redshift
uncertainties affect the redshift bin size as well as the
observed angle, distorting the volume element and chang-
ing the number counts. We take the probability of assigning
a photo-z zphot to a cluster of true redshift z to be also a
Gaussian distribution

 p�zphotjz� �
1������������

2��2
z

q exp��y2�zphot��; (6)

where
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 y�zphot� 	
zphot � z� zbias���������

2�2
z

q (7)

and the redshift bias zbias � zbias�z� and variance �2
z �

�2
z�z� are allowed to be arbitrary functions of redshift.
Given a perfect angular selection characterized by an

angular top hat window Wth
i ���, the mean number of

clusters in a photo-z bin defined by zphot
i 
 zphot 
 zphot

i�1 is

 �m�;i �
Z zphot

i�1

zphot
i

dzphot
Z
d3x �n�Wth

i ���p�z
photjz�

�
Z
d3x �n�Wi�x�; (8)

where the total window function Wi�x� is given by

 Wi�x� � Wth
i ���Fi�z�; (9)

and

 Fi�z� �
Z zphot

i�1

zphot
i

dzphotp�zphotjz� �
1

2
�erfc�yi� � erfc�yi�1��;

(10)

with yi � y�zphot
i �. The total window function in Eq. (9)

takes into account photo-z error information carried by
Fi�z�. Notice that when zbias � �z � 0, the distribution
p�zphotjz� � ��zphot � z� and Fi�z� becomes a top hat
Wth
i �z�, which combined with the angular top hat produces

the full 3d top hat window Wth
i �x� � Wth

i ���W
th
i �z� of a

perfect selection. Using Eqs. (5) and (8)–(10) the mean
number counts in a cell defined by the photo-z bin and a
solid angle �� can be written as

 �m�;i �
Z
d�dz

r2�z�
H�z�

�n��z�Wth
i ���Fi�z�

�
Z
dz
d �m�

dz
1

2
�erfc�yi� � erfc�yi�1��; (11)

where we used the angular top hat window to perform the
solid angle integral and defined

 

d �m�

dz
	 ��

r2�z� �n��z�
H�z�

: (12)

The solid angle �� is related to the angular extension �s of
the cell by

 �� �
Z
d�Wth

i ��� � 2��1� cos�s� � ��2
s (13)

and the approximation is true in the flat sky regime, valid
for small angle windows.

It is instructive to consider the sensitivity of number
counts to the photo-z parameters in some limits. Let us
consider the simple case of a sharp mass threshold (i.e.
drop the � � 1 index) and let us assume that the redshift
bias and variance are smooth functions of redshift. From

Eq. (11), the relative sensitivity of the mean counts �mi �

�m��1;i in a photo-z bin of width �zpi � zphot
i�1 � z

phot
i to the

redshift bias around �2
z � 0 is

 lim
�2
z!0

@ ln �mi

@zbias
�

1

�mi

d �m
dz

��������yi�0

yi�1�0
��

1

�mi

d2 �m

dz2 �z
p
i ; (14)

whereas the sensitivity to the redshift variance is

 lim
�2
z!0

@ ln �mi

@�2
z
� �

1

2 �mi

d2 �m

dz2

��������yi�0

yi�1�0
�

1

2 �mi

d3 �m

dz3 �z
p
i ; (15)

and the derivatives are evaluated at the photo-z bin center
zpi � �z

phot
i � zphot

i�1 �=2. Note that these derivatives are in-
sensitive to the actual value of �2

z in this limit.
Consequently we will employ the variance �2

z instead of
the root-mean-square (rms) �z in the forecasts below.

In general, the sensitivity of the counts to higher mo-
ments of the photo-z error distribution will depend on
higher derivatives of the true redshift distribution and
will tend to be less important. Figure 1 shows the redshift
distribution given by Eq. (12) plotted as a function of
redshift for the fiducial model defined in Sec. IV as well
as the effects of zbias and �z on the observed number
counts. The distribution is shown only up to z � 0:6 for
clarity.

The result of Eq. (14) is intuitive from the fact that a
positive redshift bias decreases the counts in regions where
the redshift distribution is increasing and vice versa.
Consider the effect of the redshift bias on the number
counts in the redshift bin �z2; z3� � �0:2; 0:3� as shown in
Fig. 1. We have that @ �m2=@zbias � ��mu

2 � �m
d
3�=z

bias,
where �mu

2 is the number of upscattered clusters around
z2 and �md

3 is the number of downscattered clusters around
z3. Approximating these by rectangles, we can combine

 �mu
2 �

d �m
dz

��������z2

zbias; (16)

with a similar expression for �md
3 , and obtain Eq. (14).

The sensitivity to the redshift variance allows a similar
interpretation. In Fig. 1 we consider the effect of the
redshift scatter on the counts in the redshift bin �z4; z5� �
�0:4; 0:5�. In this case we have @ �m4=@�2

z � ��mu
4 �

�md
4 � �m

u
5 � �m

d
5�=�

2
z . Approximating these now by tri-

angles, we have

 �mu
4 �

1

2

�
0:5

d �m
dz

��������z4��z
�
�z: (17)

A similar expression for �md
4 at z4 � �z gives

 

��mu
4 � �m

d
4�

�2
z

�
0:5
2�z

d �m
dz

��������z4��z

z4��z

�� 0:5
d2 �m

dz2

��������z4

: (18)

The corresponding result for ��mu
5 � �m

d
5�=�

2
z then

leads to Eq. (15).
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The limits in Eqs. (14) and (15) are useful to get quali-
tative insight into the effect of redshift bias and variance
when they are small and vary smoothly in redshift.
Quantitatively, the finite values of these parameters as
well as more general parametrization of these functions
may cause the sensitivity of the counts to change from
these special limits. In Sec. V, we explore how the sensi-
tivity of the counts to photo-z parameters ultimately affect
dark energy constraints.

III. SAMPLE COVARIANCE

The number countsm�;i�x� fluctuate in space tracing the
linear density fluctuations ��x� induced by large scale
structure

 m�;i�x� � �m�;i�1� b��z���x��; (19)

where b��z� is the average cluster linear bias predicted
from the distribution in Eq. (4)

 b��z� �
1

�n��z�

Z dM
M

d �n��z�
d lnM

b�M; z�; (20)

and we take a fit to simulations of [25]

 b�M; z� � 1�
ac�

2
c=�

2 � 1

�c
�

2pc
�c�1� �a�

2
c=�

2�pc�

(21)

with ac � 0:75, pc � 0:3, and �c � 1:69. From Eq. (19),
the counts m�;i then possess a sample covariance given by
[26]

 S��ij � h�m�;i � �m�;i��m�;j � �m�;j�i

� b�;i �m�;ib�;j �m�;j

Z d3k

�2��3
W�i �k�Wj�k�P�k�; (22)

which accounts for the clustering of clusters due to large
scale structure. Here Wi�k� is the Fourier transform of the
window function and for simplicity we assumed that b��z�
does not vary considerably within the photo-z bin i and can
be approximated by b��z� � b��z

p
i � 	 b�;i. In the more

general case where b��z� varies considerably within the
photo-z bin, Wi�k� above would be the Fourier transform
of Wi�x�b��z�, and it would be harder to find an analytical
expression for it. We chose not to consider this case since
the approximation holds well for the small photo-z bin size
(�zp � 0:1) considered in our fiducial model.

Let the photo-z bin i be at angular diameter distance
ri 	 r�zpi � and have width �ri 	 r�zphot

i�1 � � r�z
phot
i �. Under

the assumption that H�z�, zbias�z�, and �z�z� also do not
change appreciably inside the bin, so that H�z� � H�zpi � 	
Hi and likewise for zbias�zpi � 	 zbias

i and �z�z
p
i � 	 �z;i, the

window Wi�k� is given by (see Appendix A)

 Wi�k� � 2 exp
�
ikk

�
ri �

zbias
i

Hi

��
exp

�
�
�2
z;ik

2
k

2H2
i

�



sin�kk�ri=2�

kk�ri=2

J1�k?ri�s�
k?ri�s

: (23)

Since zbias
i � �zpi in all practical cases, b�;i and P�k� do

not carry any strong dependence on the photo-z bias. In this
case, Eqs. (22) and (23) indicate that the sample variance
Sii does not depend on zbias

i and is exponentially sensitive
to �2

z;i. This will bring interesting effects when using
sample covariance as a signal for self-calibration (see

FIG. 1. The redshift distribution of cluster counts per deg2 above a sharp mass threshold Mobs
th � 1014:2h�1M� is shown (solid line)

for the fiducial survey properties defined in Sec. IV in the WMAP1 cosmology. The effects of photo-z bias and scatter are shown for
zbias � �z � 0:02 at redshift bins [0.2, 0.3] and [0.4, 0.5], respectively. The dashed lines indicate a perfect redshift selection in the
absence of photo-z uncertainties. Photo-z errors scatter objects up (light gray) and down (dark gray), changing the observed number
counts. In the limit that �2

z ! 0, a positive redshift bias decreases counts in regions where dm=dz is increasing and vice versa; the
sensitivity of the counts is then controlled by �d2m=dz2 at the bin. The effect of scatter in each bin border scales as �0:5d2m=dz2 in
this limit; the total effect then depends on how d2m=dz2 varies from bin to bin and is proportional to 0:5d3m=dz3.
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Sec. V). From Eq. (23), we see that in the absence of photo-
z errors, the window function would suppress modes along
the line of sight with wavelengths 	k < �r � �zp=H. The
presence of photo-z scatter further suppresses modes 	k <
��z=H. For our fiducial redshift binning of �zp � 0:1 we
expect significant effects to appear then if �z > �zp=��
0:03. As we will see in Sec. V, this is roughly the value of
scatter uncertainty where dark energy degradations start to
increase considerably.

IV. FISHER MATRIX AND SELF-CALIBRATION

Given a parametrized model that predicts the number
counts and their sample covariance, along with a fiducial
choice for the true values of these parameters, the Fisher
matrix formalism allows us to study the impact of redshift
uncertainties on dark energy constraints.

As discussed below, we will consider counts not only in
photo-z bins, but also in angular cells and observed mass
bins. To simplify the notation, from now on i will index a
generalized pixel of redshift, angle, and mass whenever
these are appropriate and Sij will be the corresponding
sample covariance. The total covariance is the sample
covariance plus shot variance

 Cij � Sij � �mi�ij: (24)

For convenience, we arrange the counts per pixel i into a
vector m 	 �m1; . . . ; mNpix

� and correspondingly their sam-
ple and total covariances into matrices S and C. The Fisher
matrix quantifies the information in the counts on a set of
parameters p� as [6,27,28]

 F�� � �mt
;�C�1 �m;� �

1
2 Tr�C�1S;�C�1S;��: (25)

The first term represents the information from the mean
counts and the second term carries the information from
the sample covariance of the counts. When using only
counts information, we will be using only the first term
in the Fisher matrix definition, while when using the sam-
ple covariance to employ self-calibration we will use both
terms. The Fisher matrix approximates the covariance
matrix of the parameters C�� � �F�1��� such that the

marginalized error on a single parameter is ��p�� �
�F�1�1=2

�� . When considering prior information on parame-
ters of a given ��p�� we add to the Fisher matrix a
contribution of ��2�p����� before inversion.

Next we define our fiducial choices for survey properties
and values for cosmological parameters as well as nuisance
parameters describing the observable-mass relation and
photo-z’s.

Fiducial model

We will take a fiducial cluster survey with specifications
similar to the South Pole Telescope (SPT) Survey [29]: an
area of 4000deg2 and a sensitivity corresponding to a
constant mass threshold Mobs

th � 1014:2h�1M�. We divide

the number counts into photo-z bins of �zpi � 0:1 out to
zphot

max � 2. When using self-calibration from sample vari-
ance information, we further divide these counts into 400
angular cells of 10deg2. Finally, when employing self-
calibration from the shape of the observed mass function,
we additionally divide the counts in 5 bins of
�log10M

obs � 0:2. In Sec. V D we will consider some
variations on these fiducial choices.

The observable-mass relation will be parametrized by
the mass bias Mbias and variance �2

lnM as a function of
redshift. Because the evolution in cluster parameters is
expected to be smooth in redshift, we will assume in our
fiducial model that the mass bias has a power law evolution
given by

 lnMbias�z� � Ab � nb ln�1� z� (26)

with fiducial values Ab � nb � 0. For the mass variance
�2

lnM we assume a Taylor expansion around z � 0

 �2
lnM�z� � �2

lnMjfid �
XN��1

a�0

Baz
a (27)

with fiducial values �2
lnMjfid � �0:25�2 and Ba � 0. We

have checked that using a different fiducial value of
�2

lnMjfid � �0:05�2 does not change the results. For the
fiducial model we will take a cubic (N� � 4) evolution
of the mass variance, so our fiducial model will be com-
prised of 6 nuisance parameters for the observable-mass
distribution. In Sec. V D we also consider a more general
parametrization with one value of Mbias and �2

lnM in each
photo-z bin.

For the photo-z model we will take the values of zbias�z�
and �2

z�z� in Nz different redshifts as our nuisance photo-z
parameters. Values of photo-z parameters at arbitrary val-
ues of z are then obtained by cubic spline interpolation.
Current photo-z methods can reach accuracies of �z � 0:1
for field galaxies up to moderate redshifts (z� 1:4) when
using optical filter bandpasses [10] (see also [11] for a case
with lower redshifts). If complemented by near-infrared
filters, the accuracy can be improved and well controlled
up to high redshifts (z� 2:0). Photo-z’s of red early-type
galaxies are typically even better because of their very
prominent 4000 Å break. Finally, cluster photo-z’s are
expected to be further improved by averaging the photo-
z’s of individual cluster galaxies. However, this will only
be the case if the presence of interlopers is small and well
understood. We expect therefore not only the photo-z
errors to be smaller than the corresponding errors for field
galaxies, but the error distribution to be more well behaved.
For instance the Gaussian assumption of Eq. (6) should be
a good approximation for clusters with well understood
selections. For our fiducial photo-z model, we will take
Nz � 20, i.e. one value of zbias and �2

z for each bin �z �
0:1 of true redshift. We will assume fiducial values
zbias�z�jfid � 0 and
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 �z�z�jfid � 0:03�1� z� (28)

to account for the fact that the photo-z scatter is expected to
increase at high redshifts. In Sec. V D, we consider a
different photo-z model with a constant �z�z�jfid � 0:02,
and show that the results are very similar to the ones in the
fiducial model. That the results are insensitive to the fidu-
cial values assumed in a given parametrization is a check of
the validity of our Fisher matrix approach. Obviously,
changes in the parametrization and in the number of nui-
sance parameters affect the results. The choice ofNz � 20,
corresponding to one value of zbias and �2

z per photo-z bin
used to count clusters (recall �zpi � 0:1) is, although natu-
ral, arbitrary. In principle, we could choose Nz � 10 or 40
and keep the same photo-z binning or alternatively use
coarser/finer photo-z bins. The photo-z bin size is ulti-
mately dictated by the photo-z precision that can be
achieved, e.g. the photo-z bin size should be larger than
zbias or �z. The value of �zpi � 0:1 chosen reflects con-
servative expectations for the photo-z precision of future
cluster surveys. In Sec. V D we consider alternative models
with Nz � 10 and �zpi � 0:2.

For the fiducial cosmological parameters, we will as-
sume a flat universe and take parameter values based on the
results of the Wilkinson Microwave Anisotropy Probe first
year data release (WMAP1). In Sec. V D we will also
consider a fiducial cosmology based on the third year
data release (WMAP3). We chose the WMAP1 as the
fiducial case since this cosmology will place the stronger
requirements on the photo-z errors. For the WMAP1 case,
the cosmological parameters are the normalization of the
initial curvature spectrum �
 �� 5:07
 10�5� at k �
0:05 Mpc�1 (corresponding to �8 � 0:91, see [30]), its
tilt n�� 1�, the baryon density �bh2�� 0:024�, the dark
matter density �mh2�� 0:14�, and the two dark energy
parameters of interest: its density �DE�� 0:73� relative
to critical and equation of state w�� �1�which we assume
to be constant. The fiducial values are given in parentheses.
For the WMAP3 cosmology we take �
 �� 4:53
 10�5� at
k � 0:05 Mpc�1 (corresponding to �8 � 0:76), n��
0:958�, �bh2�� 0:0223�, �mh2�� 0:128�, �DE�� 0:76�,
and w�� �1�. We will assume 1% priors on all cosmo-
logical parameters except for the dark energy parameters,
which will vary freely.

V. RESULTS

Now we apply the formalism developed in Sec. IV to
study how dark energy constraints are affected by redshift
uncertainties. We first consider the case where masses are
perfectly known and only information from counts is used
to constrain dark energy. We then progress to a more
pessimistic case where masses are unknown and self-
calibration is employed in a joint fit of dark energy and
observable-mass parameters. We then consider the case
where masses are known, and self-calibration is used to

reduce the redshift requirements. Finally, we study how
stable our results are to changes in our fiducial parametri-
zation and estimate the requirements on the size of cali-
bration training sets necessary in order not to degrade dark
energy constraints appreciably.

Given the values of the prior uncertainties in the redshift
bias ��zbias� and variance ���2

z�, which produce the con-
straint ��w� � ��wj��zbias�; ���2

z�� on the dark energy
equation of statew, we define thew degradation dw relative
to a reference case with w constraint ��w�jref <��w� as

 dw���zbias�; ���2
z�� �

��wj��zbias�; ���2
z��

��w�jref
� 1 (29)

and likewise for the �DE degradation d�DE
. Unless other-

wise specified, we will take the reference case to be the
baseline case of perfect redshifts ��w�jref � ��wj0; 0�. In
some cases, though, we will also use this degradation
definition to generally compare two different scenarios
such as the WMAP1 versus WMAP3 cosmologies and
implementations assuming masses to be perfectly known
versus self-calibrated.

A. Perfect mass calibration

In the case of perfect knowledge of the observable-mass
relation, the dark energy constraints from cluster counts
alone are quite strong, as long as we have a reasonable
knowledge of redshifts parameters. In the case of perfect
redshifts, the baseline constraints are ��w;�DE� �
�0:033; 0:0081� in the fiducial model.

These constraints are degraded as the uncertainties in the
redshift bias and variance increase. With counts informa-
tion only, interesting dark energy constraints can only be
extracted if we have some prior knowledge of both redshift
bias and scatter uncertainties, i.e. no constraints can be
extracted if either ��zbias� ! 1 or ���2

z� ! 1.
The top panels of Fig. 2 show the degradations in dark

energy for finite values of redshift uncertainties. The top
left panel shows dw and d�DE

as a function of ��zbias� (with
���2

z� � 0) and as a function of ���2
z� (with ��zbias� � 0).

The top right panel shows contours of fixed dw values in

the plane defined by values of ��zbias� and
�������������
���2

z�
q

. Table I
shows constraints and degradations in the fiducial model
for the case of perfect masses and for the self-calibration
cases of Sec. V B and V C. As expected, the dark energy
constraints are more sensitive to the photo-z bias compared
to the photo-z scatter by about an order of magnitude.

B. Mass self-calibration

Now we consider the case where we do not know the
observable-mass parameters and solve for them along with
dark energy parameters simultaneously by means of self-
calibration with clustering and shape information.

Let us consider first the case of perfect redshifts. Self-
calibration results are shown in Fig. 3 for our fiducial
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model. For reference, the case of perfect masses is dis-
played in the black solid ellipsis corresponding to the tight
baseline constraints of Sec. VA. If no self-calibration of

the observable-mass relation is used in a joint fit of mass
and dark energy parameters, no interesting constraints can
be extracted. Keeping redshifts fixed, assuming the func-

TABLE I. Dark energy baseline constraints and degradations for the fiducial model with
observable-mass parameters known/marginalized and with/without self-calibration. Baseline
constraints ��w� and ���DE� are for ��zbias� � ���2

z� � 0 and degradations dw and d�DE

relative to the baseline are for ��zbias� � 0:003 and
�������������
���2

z�
q

� 0:03.

Observable-mass parameters Information Constraints Degradations
lnMbias �2

lnM ��w� ���DE� dw d�DE

Known Known Counts 0.033 0.0081 21% 17%
Known Marginalized Counts 0.19 0.21 90% 108%
Marginalized Marginalized Counts — — — —

Known Known Counts� self-calibration 0.031 0.0078 16% 15%
Known Marginalized Counts� self-calibration 0.072 0.019 5% 3%
Marginalized Marginalized Counts� self-calibration 0.12 0.029 11% 8.3%

FIG. 2. Dark energy sensitivity to prior knowledge of redshift parameters in the WMAP1 cosmology and fiducial model described in
Sec. IV. The top row displays results for the case of perfect masses employing only counts information. The bottom row is for the case
of marginalized observable-mass parameters and self-calibration with clustering and shape information. The left panels show percent
degradation in dark energy parameter constraints with respect to case of perfect redshift knowledge as a function of prior uncertainty in
zbias for fixed �2

z and as a function of prior uncertainty in �2
z for fixed zbias. The right panels display the respective contours of fixed

degradation dw in the ��zbias� versus
�������������
���2

z�
q

plane. Compared to perfect masses, in the case of self-calibration dark energy
degradations are weaker due to (i) worse baseline constraints and (ii) decreased degeneracies between dark energy and photo-z
parameters, partially broken by self-calibration.
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tional forms of Eqs. (26) and (27) for the mass bias and
variance and employing self-calibration from clustering
information in the sample covariance of counts produces
constraints ��w;�DE� � �0:23; 0:22�. Further adding
shape information from multiple mass bins allows a good
degree of self-calibration as shown in the light gray ellipsis
of Fig. 3; the constraints in this case are ��w;�DE� �
�0:12; 0:029�, i.e. there is a degradation of d�w;�DE� �
�280%; 260%� with respect to the case of perfect mass in
Sec. VA.

As the uncertainty in redshift parameters increases, the
ability to self-calibrate masses is reduced. The dark gray
ellipsis in Fig. 3 shows how the self-calibrated case above
is degraded if we take the photo-z parameters to have

uncertainties of ��zbias� � 0:003 and
�������������
���2

z�
q

� 0:03 si-
multaneously as opposed to being fixed; in this case the
constraints are ��w;�DE� � �0:14; 0:032�, i.e. a degrada-
tion of d�w;�DE� � �11%; 8:3%�. The dark energy degra-
dation in the case of self-calibration is shown in the bottom
panels of Fig. 2 and in the bottom rows of Table I. Notice
that because the baseline constraints (perfect redshifts) are
worse with self-calibration compared to fixed masses, the
degradation relative to the baseline is correspondingly
weaker. The weaker degradation is partially because the
baseline constraints are worse, but also because self-
calibration helps break not only the degeneracy between
dark energy and mass, but also redshifts. In Sec. V C we
investigate that further.

C. Redshift self-calibration

If external mass calibrations can partially or totally
constrain the mass bias or scatter or both, self-calibration
is still useful to monitor redshifts, therefore decreasing the
redshift requirements. More generally, self-calibration pro-
vides important consistency checks that theoretical as-
sumptions and observations agree, even more so when
we have stringent external mass priors. External mass
calibrations can come, for instance, from follow-up of a
small sample of clusters with very well measured masses,
weak lensing calibrations, simulations, etc.

Let us consider the limiting case where external calibra-
tions put strong priors on the mass bias, but no prior on the
mass scatter, i.e. ��lnMbias� � 0 and ���2

lnM� � 1. In this
case, without self-calibration, the constraints for perfect
redshifts are ��w;�DE� � �0:19; 0:21� and they degrade to
��w;�DE� � �0:35; 0:44�, i.e. a degradation of
d�w;�DE� � �90%; 108%� if we impose redshift priors

of ��zbias� � 0:003 and
�������������
���2

z�
q

� 0:03. Employing self-
calibration the constraints for perfect redshifts
��w;�DE� � �0:072; 0:019� degrade to ��w;�DE� �
�0:076; 0:019� with the same redshift priors, i.e. a degra-
dation of only d�w;�DE� � �5%; 3%�.

Consider now the limiting case where external priors can
further constrain the mass scatter to ���2

lnM� � 0 in addi-
tion to the mass bias. Without self-calibration, the con-
straints for perfect redshifts are
��w;�DE� � �0:033; 0:0081� and they degrade to
��w;�DE� � �0:039; 0:095� if we impose redshift priors

of ��zbias� � 0:003 and
�������������
���2

z�
q

� 0:03, i.e. a degradation
of d�w;�DE� � �21%; 17%�. Employing self-calibration
the constraints for perfect redshifts ��w;�DE� �
�0:031; 0:0078� degrade to ��w;�DE� � �0:036; 0:0090�
with the same redshift priors, i.e. a degradation of
d�w;�DE� � �16%; 15%�. These results are also displayed
in Table I. Interestingly, in the limit where we have no
redshift knowledge (��zbias� � ���2

z� � 1), without self-
calibration no interesting dark energy constraints are pos-
sible, but employing full self-calibration we can still obtain
��w;�DE� � �0:11; 0:11�.

These results show that self-calibration is very effective
not only in allowing a joint fit of mass and cosmological
parameters, but also in reducing the redshift requirements
in those cases. As external priors put constraints on some
of the observable-mass relation parameters, but not all of
them, self-calibration becomes even more important. In the
limit where external priors are even stronger and masses
are perfectly determined, self-calibration becomes less
important, but it still helps monitor redshifts. However,
even in this case prior redshift knowledge is still important
in order to extract the survey full constraining power. Since
any given survey is likely to be in between these limit
cases, both self-calibration techniques and good knowl-
edge of redshifts will be comparably important.

FIG. 3. Dark energy constraints for the fiducial model in the
WMAP1 cosmology. From inner to outer ellipses, the 68% CL
regions are shown for the case where redshift and mass parame-
ters are perfectly known (black); the case with self-calibration
from sample covariance and shape information but fixed photo-z
parameters (light gray); the case with self-calibration and prior
uncertainties on photo-z parameters of ��zbias� � 0:003 and�������������
���2

z�
q

� 0:03 (dark gray). The latter case corresponds to a
degradation of d�w;�DE� � �11%; 8:3%� with respect to the
case of fixed redshifts.
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D. Fiducial model dependence

In this section we consider deviations from our fiducial
model and their effect on the dark energy degradation
results. Even though changes in the fiducial values of the
nuisance parameters describing the observable-mass rela-
tion and photo-z’s have a very small effect on the con-
straints, changes in their parametrization will obviously
affect the results. For instance, increasing the number of
parameters in the mass-observable relation to allow for
more general models produces worse baseline constraints
and correspondingly weaker degradations due to photo-z
uncertainties. The constraints obviously also change if the
fiducial cosmology and survey specifications deviate con-
siderably from the ones assumed in the fiducial model. We
will first consider a fiducial cosmology based on cosmo-
logical parameters from WMAP3 and also changes in our
fiducial survey properties. Finally we will consider devia-
tions in the photo-z model assumed.

1. Fiducial cosmology and survey properties

Because of the exponential sensitivity of the cluster
mass function to the growth of structure, the decrease in
the value of �8 for WMAP3 causes the overall number
counts to be reduced by a factor of �4 with respect to the
WMAP1 case. Likewise, the reduction in counts decreases
the relative importance of sample variance errors with
respect to Poisson shot noise. In Fig. 4 we show the ratio
of the average number counts mi�z� in the WMAP3 and
WMAP1 cosmologies, as well as the ratio of the corre-
sponding sample variance Sii relative to Poisson variance
mi.

Let us first consider the case of perfect knowledge of the
observable-mass parameters. In the case of perfect red-
shifts, the baseline constraints for the WMAP3 cosmology
with count information become ��w;�DE� �
�0:047; 0:010�. Even though the WMAP3 total number
counts are reduced by a factor of �4 compared to
WMAP1, the baseline constraints degrade only by
d�w;�DE� � �44%; 25%�. If all clusters carried the same
cosmological information, we would naively expect a fac-
tor of �2 degradation from the increased Poisson errors.
However, the rare high mass/redshift clusters are more
sensitive to cosmology. The fact that the relative reduction
on the number of these rare clusters is more pronounced
provides extra cosmology information that partially balan-
ces the degradation from the overall counts reduction.

Let us now consider the dark energy degradations due to
photo-z uncertainties. The top panel of Fig. 5 shows the
degradation of dark energy parameters as a function of
photo-z uncertainties for the WMAP3 cosmology. Notice
that dark energy degradations relative to the baseline cases
are slightly weaker for the WMAP3 case, since its baseline
is worse, confirming the trend that surveys with smaller
yields require less knowledge of redshift parameters for
fixed baseline degradations. In other words, in the limit of

perfect masses for the WMAP3 case, dark energy con-
straints are less sensitive to photo-z uncertainties because
the best achievable results are worse.

Now we consider the case where we marginalize over
the observable-mass parameters and employ self-
calibration. In this case, with perfect redshifts the con-
straints for WMAP3 are ��w;�DE� � �0:24; 0:048�, i.e. a
degradation of d�w;�DE� � �410%; 370%� with respect to
the case of perfect masses and d�w;�DE� � �96%; 64%�
with respect to the corresponding self-calibrated case in the
WMAP1 cosmology. Self-calibration is based on the abil-
ity to divide the cluster sample in space and mass. The
decrease in the number counts for WMAP3 reduces the
relative importance of sample variance over the increased
shot noise, and reduces the power of self-calibration by
clustering. In addition, the ability to split the sample in
mass bins is decreased because we run out of clusters at
high masses, and self-calibration from shape information is
also reduced.

The bottom panel of Fig. 5 shows the dark energy
degradation as a function of photo-z uncertainties for the
case of self-calibration in the WMAP3 cosmology.
Relative to the case of perfect masses and to the self-
calibrated case of WMAP1, most degradations for
WMAP3 are weaker, as expected from the worse baseline
constraints. However the ���DE� degradation as a function�������������
���2

z�
q

is stronger relative to both cases. That happens
because self-calibration uses sample covariance informa-
tion, which is exponentially sensitive to �2

z . With the
reduced relative importance of sample variance in

FIG. 4. The lower value of �8 in the WMAP3 cosmology
decreases the number counts with respect to WMAP1, especially
at high redshift. Similarly, the relative importance of sample
variance errors with respect to the increased shot noise de-
creases, lowering the power of using sample variance as a signal
for self-calibration.
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WMAP3, changes in �2
z are now relatively more degener-

ate with cosmology and observable-mass parameters.
To make the point clearer, let us consider the case where

we employ self-calibration only from shape information,
but not clustering. In this case the self-calibration con-
straints for perfect redshifts are ��w;�DE� �
�0:26; 0:11�, i.e. the w constraint is nearly identical to the
full self-calibration case, but the �DE constraint is still �2
times higher. Keeping the photo-z bias fixed ��zbias� � 0

and applying a prior on the photo-z variance of
�������������
���2

z�
q

�

0:2, the constraints degrade to ��w;�DE� � �0:87; 0:17�,
i.e. a degradation of d�w;�DE� � �240%; 54%�. With full
self-calibration the corresponding degradation is (30%,
110%). Therefore whereas clustering self-calibration
from sample variance does not help the w constraint to
further decrease considerably from its value with shape
self-calibration only, it does make this constraint less
sensitive to photo-z uncertainties. On the other hand, clus-
tering self-calibration improves the �DE constraint, but

leaves it more unstable to photo-z scatter uncertainties.
These features tell us that, when employing self-
calibration, knowledge of the photo-z scatter is essential,
especially in a situation of fewer clusters such as in the
WMAP3 cosmology.

For completeness, we consider other survey modifica-
tions that lead to roughly the same reduction in the total
number counts as the WMAP3 cosmology relative to
WMAP1. Table II shows results for the fiducial model
along with the WMAP3 case and changes in the mass
threshold Mobs

th , total survey area, and maximum survey
redshift zphot

max . All cases lead to a reduction in the total
counts by a factor of �4 relative to the fiducial model. In
the case where we change the maximum redshift to zphot

max �
0:5, we also reduce the number of photo-z parameters to
Nz � 5 so as to keep one value of zbias and �2

z per photo-z
bin of �zpi � 0:1. Except for the change in zphot

max , which
makes dark energy constraints and degradations much
worse, all other cases produce results roughly similar.

FIG. 5. Degradation in dark energy parameters similar to Fig. 2 but for the WMAP3 cosmology.

TABLE II. Dark energy baseline constraints and degradations for the fiducial model (WMAP1, Mobs
th � 1014:2h�1M�, area �

4000deg2, zphot
max � 2:0) and various deviations from the fiducial survey properties and cosmology. In all cases the total number of

clusters is reduced by a factor of �4 with respect to the fiducial case. Baseline constraints are for ��zbias� � ���2
z� � 0 and relative

degradations are for ��zbias� � 0:003 and
�������������
���2

z�
q

� 0:03.

Case Number counts
per deg2

Observable-mass parameters Information Constraints Degradations
��w� ���DE� dw d�DE

Fiducial model 8.0 Known Counts 0.033 0.0081 21% 17%
WMAP3 2.1 Known Counts 0.047 0.010 5.7% 6.1%
Mobs

th � 1014:435h�1M� 2.1 Known Counts 0.050 0.012 5.6% 5.8%
Area � 1000deg2 2.0 Known Counts 0.054 0.014 4.9% 3.5%
zphot

max � 0:5 2.3 Known Counts 0.063 0.015 410% 780%

Fiducial model 8.0 Marginalized Counts� self-calibration 0.12 0.029 11% 8.3%
WMAP3 2.1 Marginalized Counts� self-calibration 0.24 0.048 7.0% 6.2%
Mobs

th � 1014:435h�1M� 2.1 Marginalized Counts� self-calibration 0.24 0.052 7.3% 5.4%
Area � 1000deg2 2.0 Marginalized Counts� self-calibration 0.24 0.052 4.0% 2.9%
zphot

max � 0:5 2.3 Marginalized Counts� self-calibration 0.28 0.034 35% 42%
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Obviously, although these changes produce similar counts
reduction, they all remove different clusters. For instance,
the WMAP3 reduction is more pronounced at high red-
shifts, whereas the change in Mobs

th removes all low mass
clusters and the change in survey area reduces the numbers
of all clusters equally.

In the case of perfect masses and counts only, except for
the zmax reduction case, the cases with worse baseline
constraints have weaker degradations; the more drastic
change of reducing zphot

max has a much higher impact because
with the total removal of high redshift clusters, the leverage
to probe the evolution of the growth of structure is severely
diminished.

In the case of self-calibration, many factors affect the
degradations. For the fiducial model and the cases of
decrease in area and zphot

max , the degradations are smaller
compared to the case of only counts, because their baseline
constraints are much worse and self-calibration is fairly
efficient. Even though the degradation in the case of zphot

max

reduction is still the highest, it is many times smaller than
in the case of counts only, because with this small redshift
range, self-calibration is able to break most of the high
degeneracy between mass, redshift, and cosmology. For
the cases of WMAP3 and reduction in Mobs

th , the degrada-
tions are larger compared to counts only and perfect
masses. In the WMAP3 case self-calibration is harder
because of the reduction in �8, which lowers the value of
Sii. In the case of reduction in Mobs

th , the removal of the low
mass clusters makes self-calibration from shape informa-
tion harder. In any case, we confirm the trend that more
ambitious surveys will be able to extract more information
from self-calibration techniques but will also require more
redshift knowledge for a full realization of their constrain-
ing power.

2. Fiducial observable-mass parameters

Now we return to the WMAP1 cosmology case, but we
change our fiducial parametrization of the observable-mass
relation. We allow the mass bias and variance to be general
functions of redshift, i.e. instead of assuming the functional
forms in Eqs. (26) and (27), we now have one value of
Mbias and �2

lnM in each photo-z bin of �zpi � 0:1. For the
case of fixed mass parameters, the dark energy constraints
obviously do not change, but they become ��w;�DE� �
�0:22; 0:030�, i.e. a degradation of d�w;�DE� � �80%; 4%�
with respect to the fiducial model with self-calibration.

In Fig. 6 we show the corresponding dark energy deg-
radation from the baseline constraints as a function of
photo-z uncertainties in this case. Now ��w� has a worse
baseline, and its degradation is less sensitive to ��zbias� but
more sensitive to ���2

z� compared to the fiducial model.
On the other hand, since the baseline ���DE� basically did
not change, meaning that it is making strong use of self-
calibration, its degradation as a function of ��zbias� is
nearly identical, but is much stronger as a function of

���2
z�. In this conservative case of 40 parameters for the

observable-mass relation, where self-calibration is being
used in its full power, if we are interested in moderate dark
energy degradations (� 10%–20%), both ��zbias� and
���2

z� are important. As we transit to the case with fewer
parameters, ��zbias� becomes relatively more important.

3. Fiducial photo-z parameters

Finally, we consider the case where Eq. (28) in our
fiducial model is replaced by a fiducial photo-z scatter of
�zjfid � 0:02 constant in redshift. Let us consider the case
of perfect masses first. In the case of perfect redshifts the
baseline constraints in this case are ��w;�DE� �
�0:032; 0:080�, i.e. they remain nearly the same as in our
fiducial case (� 1% improvement). In the top panel of
Fig. 7 we show dark energy degradations as we allow for
uncertainties in photo-z parameters. Since the zbias model is
still the same, degradations as a function of ��zbias� are

identical to the fiducial case. As a function of
�������������
���2

z�
q

they
are only slightly weaker.

In the case of self-calibration, the baseline constraints
are ��w;�DE� � �0:11; 0:026�, i.e. they improved by (6%,
10%) with respect to the corresponding self-calibrated case
in the fiducial model. Now the improvement is more no-
ticeable than in the case of perfect masses since we use
sample variance to self-calibrate mass parameters. In the
bottom panel of Fig. 7 we show dark energy degradations
in this case. Again, degradations as functions of��zbias� are

identical to the fiducial model. As a function of
�������������
���2

z�
q

degradations become stronger at lower values of ���2
z�,

since we are now in a better baseline. At higher values of
���2

z�, degradations become weaker, since self-calibration
is now more efficient.

FIG. 6. Degradation in dark energy parameters for the case
where Mbias and �2

lnM are free functions of redshift as opposed to
having the functional forms of Eqs. (26) and (27) assumed in our
fiducial model.
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Finally, let us consider the effect of changing the number
of photo-z parameters Nz and/or the photo-z bin size �zp.
In Table III we show the fiducial model and variations in
the photo-z model that include changes in the fiducial
values of the photo-z scatter, Nz and �zp. The degradations
are shown for priors of ��zbias� � 0:003

�������������
Nz=20

p
and

���2
z� � �0:03�2

�������������
Nz=20

p
. The scaling of the priors with

Nz comes from Eqs. (30) and (31) and the fact that the
number Nspec of spectroscopic calibrators in a given red-
shift region is inversely proportional to the number of
redshift bins Nspec / 1=Nz. These scaled priors then reflect
constraints per fixed bin �z � 0:1 of true redshift indepen-
dently of the value of Nz used. Notice from Table III that
the baseline constraints do not change much by doing this
changes in the fiducial model but the degradations relative
to the baseline are affected by a series of competing effects.

Decreasing the number of photo-z parameters to Nz �
10 while keeping the photo-z bin size at �zpi � 0:1
(i) partially decreases some degeneracies between dark

energy and the fewer photo-z parameters and (ii) makes
the photo-z parameters smoother functions of redshift,
making photo-z perturbations more nonlocal (less re-
stricted to a particular photo-z bin). The latter effect causes
(a) the counts sensitivity to zbias to increase because it
depends on the value of zbias at the bin borders, and
(b) the sensitivity to �2

z decreases because the number of
objects scattered up, controlled by the values of �z at the
bin borders, more efficiently compensates the number of
objects scattered down, controlled by �z at the bin center.
In the case of counts only and perfect mass the dark energy
degradations are weaker than the fiducial case whereas in
the case of unknown masses and self-calibrations they are
stronger.

Increasing the bin size to �zp � 0:2 but keeping Nz �
20 (i) produces a coarser probe of cluster mass function but
(ii) reduces the Poisson noise in the counts, therefore
increasing the importance of sample variance and cluster-
ing self-calibration. Notice though that in all cases absolute

FIG. 7. Dark energy parameters degradation for a fiducial photo-z scatter of �zjfid � 0:02 constant in redshift as opposed to the
fiducial model of Eq. (28).

TABLE III. Dark energy baseline constraints and degradations for the fiducial model (�zjfid � 0:03�1� z�, Nz � 20, and �zp �
0:1) and deviations from the fiducial photo-z parameters. Baseline constraints are for ��zbias� � ���2

z� � 0 and relative degradations
are for ��zbias� � 0:003

��������������
Nz=20

p
and ���2

z� � �0:03�2
��������������
Nz=20

p
. The priors are scaled to reflect constraints per fixed bin �z � 0:1 of true

redshift.

Case Observable-mass parameters Information Constraints Degradations
��w� ���DE� dw d�DE

Fiducial model Known Counts 0.033 0.0081 21% 17%
�zjfid � 0:02 Known Counts 0.032 0.0080 12% 13%
Nz � 10 and �zp � 0:1 Known Counts 0.033 0.0081 15% 15%
Nz � 20 and �zp � 0:2 Known Counts 0.033 0.0083 51% 52%
Nz � 10 and �zp � 0:2 Known Counts 0.033 0.0083 14% 14%

Fiducial model Marginalized Counts� self-calibration 0.12 0.029 11% 8.3%
�zjfid � 0:02 Marginalized Counts� self-calibration 0.11 0.026 15% 30%
Nz � 10 and �zp � 0:1 Marginalized Counts� self-calibration 0.12 0.029 13% 14%
Nz � 20 and �zp � 0:2 Marginalized Counts� self-calibration 0.13 0.031 22% 6.1%
Nz � 10 and �zp � 0:2 Marginalized Counts� self-calibration 0.13 0.031 11% 4.8%
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errors increase with �zp since subdividing the data can
only help constraints.

If in addition to using coarser bins of �zp � 0:2 we
simultaneously decrease the number of photo-z parameters
to Nz � 10 so as to still have one photo-z parameter per
photo-z bin, the degradations in all cases become slightly
better than in the fiducial model, although around slightly
worse baselines. That shows that our results are relatively
robust to the particular binning choice if we keep the
number of photo-z parameters per bin of true redshift
constant. In this case, coarser photo-z bins lose shape
information on the redshift distribution but allows the
fewer photo-z parameters to be better known by the same
factor that they were reduced in number. Since the best
achievable constraints are worse with such wider bins and
the power of cluster counts surveys lies exactly in their
ability to split the counts in a reasonable number of redshift
and mass bins, photo-z bins much coarser than these are
unlikely to be adopted in future cluster survey analyses if
they are to be competitive dark energy probes.

E. Training set requirements

The photo-z requirements for a fixed dark energy deg-
radation ultimately translate into requirements on the size
of the calibration training set (with known redshifts), from
which we infer the photo-z error parameters. With the
assumption made here that the cluster photo-z errors
have a Gaussian distribution, the uncertainties in the
photo-z parameters zbias�zi� and �2

z�zi� in a given redshift
bin i are related to the number Nspec�zi� of spectroscopic
training set calibrators in that bin by

 ��zbias�zi�� � �z�zi�

������������������
1

Nspec�zi�

s
; (30)

 ���2
z�zi�� � �2

z�zi�

������������������
2

Nspec�zi�

s
: (31)

We are interested in the values of Nspec necessary in
order not to degrade dark energy constraints appreciably.
There are basically two ways to go about this question,
which depend on the choice of the spectroscopic calibra-
tors. The first case corresponds to choosing the calibrators
to be clusters with at least one member galaxy whose
spectroscopic redshift has been measured, in which case
Nspec corresponds to the number of such spectroscopic
clusters and �z�zi� is the cluster photo-z scatter in the
redshift bin. This choice is natural, but may suffer from
the fact that a small number of such clusters are likely to be
available in a given survey. The second choice then tries to
compensate for that by including more objects in the
calibration process. Since most clusters contain large num-
bers of red elliptical galaxies and optical cluster finder
methods are typically tuned to find exactly such clusters,
one can try to use not only the cluster spectroscopic red-

shifts, but the redshifts of all spectroscopic elliptical gal-
axies including field galaxies. Although this would make
use of a much larger sample of objects, they would typi-
cally have a larger photo-z scatter and the assumption that
all red galaxies (in the field and in clusters) share the same
photo-z error properties would have to be checked. In any
case, the first choice is general enough in the sense that we
can think of the red galaxy sample as being used, not
directly in the cluster photo-z parameters calibration, but
in the estimation of these parameters. From that perspec-
tive, having a large spectroscopic sample of red galaxies
helps calibrate the photo-z’s of cluster member galaxies
and decrease the cluster photo-z scatter, since each cluster
member provides roughly an independent photo-z mea-
surement of the cluster photo-z. Even though some cluster
finding methods, such as those based on the SZ signal and
weak lensing shear, do not preferentially detect clusters
with large numbers of red galaxies, most future cluster
surveys will have a spectroscopic follow-up of a sample
of the detected clusters. For that reason, in the following
analysis we will take the first choice of redshift calibrators,
i.e. spectroscopic clusters.

Recall in Fig. 2 we considered fixed degradations in the
dark energy equation of state w, given priors ��zbias� and
���2

z� which were constant in redshift. In that case, each
value of dw requires ��zbias� and ���2

z� to be lower than
certain values, which in turn produce lower limits on
Nspec�zi�. For illustrative purposes let us fix dw � 10%
and consider the fiducial model with counts information
only, in which case Fig. 2 requires ��zbias�< 0:003 and�������������
���2

z�
q

< 0:03. The condition on ��zbias�, which is more
stringent than the one on ���2

z�, requires the number of
calibrators in bins of �zi � 0:1 to beNspec�zi � 0:5�> 110
and Nspec�zi � 1:95�> 870. However, all these numbers
are excessively high due to our requirement of constant
��zbias� and ���z� in each bin, including the high redshift
ones that have little impact on the dark energy constraints.

To remedy this problem, let us instead take Nspec to be a
fixed fraction of the total number in a given bin

 Nspec�zi� � ami: (32)

We can then study the requirements on dark energy deg-
radations as a function of a. We should keep in mind
though that, observationally, it is even harder to obtain
spectra for the few clusters at high redshifts compared to
those (also few ones) at very low redshift, because at higher
redshifts the 4000 Å break of elliptical galaxies leaves the
optical filter coverage. Therefore in practice a will proba-
bly be a decreasing function of redshift.

In Fig. 8, we show the degradation dw as a function of a
in the fiducial model and also for the WMAP3 cosmology
as well as the case with �zjfid � 0:02. Notice that even in
the limit where all clusters have photo-z’s (a � 1), because
the number of these clusters is finite, we still have some
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degradation compared to the case where the photo-z pa-
rameters have zero uncertainties. Even though this intrinsic
degradation can be as high as �10%, as shown in the top
panel of Fig. 8, if a was actually equal to 1, one would not
use photo-z’s in the first place, since all objects would have
perfect redshift measurements. Therefore actual degrada-
tions are smaller than those shown in Fig. 8 for very high
values of a. Also, in practice only values of a that realize
integer numbers of clusters are allowed. However, since we
are considering a constant in redshift, we used continuous
values of a, even those that give Nspec < 1. Thus, actual
degradations for very low values of a are larger than those
shown in Fig. 8, especially for WMAP3.

Ignoring these caveats just mentioned, we see from the
top panel in Fig. 8 that the WMAP3 case has a smaller
degradation than the fiducial model when employing
counts only, consistently with the results of Sec. V D 1.
Moreover reducing the photo-z scatter has an important
impact on the w degradation as expected.

From the bottom panel of Fig. 8, we see that self-
calibration tends to make the training size requirements
smaller in most cases. Interestingly, dw in both the fiducial
model and the WMAP3 cosmology are nearly identical as a
function of a. That happens because for fixed values of
��zbias�zi�� and ���2

z�zi��, whereas w degradations are
typically weaker for WMAP3, the numbers mi of existing
clusters are smaller and consequently the number of spec-
troscopic calibrators are reduced by the same factor, mak-
ing it harder to achieve these photo-z accuracies.

These results highlight the importance of having the best
photo-z estimators available, which allow for the photo-z
scatter to be as small as possible; this has a direct impact in

reducing the required calibration set size. In the context of
self-calibration, having spectroscopic redshifts for only
�1% of the clusters is enough to keep dw & 30%, whereas
in the case of counts only, this spectroscopic sample needs
to contain at least�8% of the clusters. For a more stringent
requirement of dw & 20%, with self-calibration it is nec-
essary to have spectroscopic redshifts for �4% of the
clusters. Quantitatively, this requires �1300 spectroscopic
clusters in the fiducial model and �300 in the WMAP3
cosmology. Given that the training set size requirements
for other cosmological probes such as weak lensing and
baryon acoustic oscillations are on the order of hundreds of
thousands, only a few percent of these galaxies need to be
in clusters in order for those training sets to serve also as
cluster calibration samples, without additional observatio-
nal effort. Complementing the existing training sets with
spectroscopic follow-up observations would then further
improve dark energy constraints and allow for degrada-
tions at the percent level.

F. Caveats

There are a number of caveats associated with our
results. We have taken a constant Mobs

th whereas in reality
we expect it to be cosmology and redshift dependent for a
SZ survey like SPT (although less than in an x-ray survey
[31]). Our constant fiducial Mobs

th can be thought of as an
effective mass threshold that produces the same number
counts as the true threshold. If the effective mass threshold
in a real survey deviates considerably from the one con-
sidered here, the baseline dark energy constraints will
change, and so will the degradations with respect to this
baseline. As discussed in Sec. V, a change in Mobs

th has an
effect similar to a change in �8 or in the survey area,
namely, the change in the total cluster counts.

The variation of the observable-mass relation with cos-
mology may also open up parameter degeneracies. For our
fiducial model we took the observable-mass distribution to
be parametrized by lnMbias and �2

lnM with a fixed func-
tional form in redshift. If this form instead mimicked the
effect of a cosmological parameter, a degeneracy would
appear. A complete treatment of these issues, which is
beyond the scope of this work, would require the choice
of a specific observable and extensive simulations to obtain
the true parameter values and their distributions.

The potential impact of degeneracies can be assessed by
considering the case where lnMbias and �2

lnM are allowed to
be arbitrary functions of redshift (Sec. V D). In this case the
baseline dark energy constraints degrade by up to 80%
relative to the fiducial model. Degradations on top of that
due to uncertainties in zbias and �2

z become weaker and
stronger, respectively.

If one further includes an arbitrary mass dependence of
these parameters, the techniques explored here are not
sufficient to provide a good degree of self-calibration,
even with perfect redshifts. Our results would still be valid

FIG. 8. Dark energy parameters degradation in the dark energy
equation of state as a function of the fraction a of clusters with
spectroscopic redshifts for the fiducial model, WMAP3 cosmol-
ogy, and photo-z scatter of �zjfid � 0:02, using counts informa-
tion only and self-calibration.
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as long as trends in mass are well known close to the mass
threshold [7]. Recent simulations [22–24] suggest that
observable-mass relations can actually be parametrized
with scaling relations involving few parameters as assumed
here. Since our main purpose here is to illustrate the
relative degradation of dark energy constraints due to
photo-z errors, the range of models considered here should
suffice.

We assumed the photo-z error parameters to follow a
Gaussian distribution and depend on redshift but not mass.
This assumption does not hold for field galaxies binned
only in redshift due to the mixing of various galaxy types.
Even though we expect Gaussian errors to be a good
approximation for clusters, which have mostly red ellip-
tical galaxies and lower photo-z scatter, possible non-
Gaussian features induced by membership contamination
may require proper modeling.

The photo-z parameters, in particular, the photo-z scatter
is expected to have some mass dependence. More massive
clusters have more galaxies to average over when comput-
ing the cluster photo-z, allowing the photo-z scatter to
decrease. We envision that the redshift/mass dependence
of photo-z parameters can be modeled from mock catalogs
and cast in simple scaling relations, likely depending on
the particular cluster finder/survey. In the lack of any
specific modeling, we chose to keep the redshift depen-
dence general and ignore the mass dependence of the
photo-z parameters.

Lastly, we did not take into account possible errors in the
theoretical cluster-mass function as well as in the cluster
bias, which might introduce parameter biases or interact
differently with photo-z errors. Even though we chose the
fit to simulations of the halo-mass function from Jenkins
et al. [21] to illustrate our results, a number of recent fits
are available [32–34]. Comparisons of the different codes
and halo definitions as well as tests of the mass-function
universality have been carried out, showing that the differ-
ent fits agree at the 5%–20% level [33,35,36]. Whereas our
cluster photo-z requirements may depend on the assumed
universality of the mass function, Warren et al. [33] have
shown that the residuals in their mass-function fit per
model increase errors in the dark energy equation of state
by at most 1% for the case of perfect mass and redshifts and
similar survey specifications to that assumed here. Since
most of our results for photo-z requirements are quoted in
terms of relative degradations, they should be fairly robust
to small changes in the assumed mass function, and we
expect further improvements in future determinations of
the halo mass function to remove this extra source of
degeneracies.

Also very important is the dependence of the cluster bias
on properties other than their redshift and mass. Recent
studies have shown that the halo bias is a function of the
halo formation history and the halo concentration due to
the dependence of these parameters on halo environment

(see e.g. [37] and references therein). Neglecting these
features might therefore affect forecasts based on self-
calibration by clustering of clusters as presented here.
Again we expect our results, when quoted relative to base-
line constraints, to be less affected, but further investiga-
tion is necessary to properly account for the effects of such
extra dependencies.

VI. DISCUSSION

The use of cluster abundance as a competitive cosmo-
logical probe requires strict knowledge of both the cluster
observable-mass relations and photo-z’s. Self-calibration
techniques help break degeneracies between cosmology
and cluster masses and, at the same time, decrease redshift
knowledge requirements. When external mass calibrations
are available, self-calibration may become even more im-
portant, assisting monitor redshifts and providing interest-
ing consistency checks. Conversely, good photo-z
knowledge is required in order to extract optimal con-
straints from self-calibration methods.

We studied the effect of photo-z uncertainties in dark
energy constraints assuming a fiducial model with survey
specifications similar to the SPT, a constant mass threshold
Mobs

th , a mass bias lnMbias parametrized by a power law in
redshift, a mass variance �2

lnM with a cubic redshift evolu-
tion, and photo-z parameters assumed to be general func-
tions of redshift but not mass.

For this fiducial model it will be necessary to have priors

of ��zbias� & 0:003 and
�������������
���2

z�
q

& 0:03 in the case of
perfect masses and counts information in order not to
degrade dark energy constraints by more than �10%. In
the case of self-calibration of the observable-mass relation,
these priors uncertainties should be kept at ��zbias� &

0:004 and
�������������
���2

z�
q

& 0:04. These requirements become
weaker/stronger if we increase/decrease the number of
nuisance parameters describing masses and redshifts or if
we consider less/more ambitious surveys or cosmologies
yielding less/more clusters.

In order to achieve these requirements, it is important
not only to use the best general photo-z techniques, but also
to understand the cluster finding selection functions and
contamination fractions; otherwise even if the photo-z
methods work well for field galaxies, the cluster redshifts
and masses might be misestimated. Large and representa-
tive training sets help decrease the redshift uncertainties
and keep the dark energy constraints close to their baseline
values and also help self-calibration be more effective.
From the self-calibration perspective, simulations play a
very important role. Self-calibration techniques are more
effective when we can parametrize the observable-mass
relation with a small number of parameters, typically with
simple scaling relations. Simulations do not need to deter-
mine exact values of these parameters, but only provide a
good confidence that these simple relations are stable to
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theoretical uncertainties and have relatively small theoreti-
cal scatter. If that is the case one can extract these parame-
ter values from self-calibration methods, which use
information that naturally comes in surveys without requir-
ing additional observational efforts.

Photo-z methods are expected to be ever improving
during the evolution of ongoing and future surveys such
as the Panoramic Survey Telescope and Rapid Response
System (PanSTARRS) [38], the SPT [29], the Dark Energy
Survey (DES) [39], the Supernova Acceleration Probe
(SNAP) [40], and the Large Synoptic Survey Telescope
(LSST) [41]. There are good prospects for the existence of
large and representative training sets that will allow these
surveys to be reasonably well calibrated. Likewise we
expect simulations to improve our knowledge of the dark
matter halo-mass functions and of the various observable-
mass relations. External calibrations from weak lensing are
likely to also play an important role in mass determina-
tions. Finally, self-calibration methods can further help
reduce requirements and provide important consistency
checks that theoretical assumptions have been or not real-
ized in the observations. All these aspects will be important
and complementary in consistent cosmological analyses of
future cluster surveys.
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APPENDIX A: WINDOW FUNCTION

Recall we used spherical coordinates x � �r; �;�� to
parametrize the position vector describing the window
volume element such that d3x � r2d�dr with d� �
sin�d�d�. The cell defines a solid angle given by �� �
��2

s in the small angle approximation. For convenience,
we will also use cylindrical coordinates to parametrize the
same vector x � �r; �;��, where r�z� is still the angular
diameter distance to redshift z and now the perpendicular
coordinates ��;�� parametrize the angular extension of the
window. In these coordinates we have d3x � �d�d�dr
and the cell defines an extension of �s � r�s. We split the
total window function into Wi�x� � Wth

?i��;��Fi�z�. Here
and below the superscript ‘‘th’’ denotes a top hat function
whose value is unity within the pixel and zero outside of
the pixel.

The volume-normalized Fourier transform of the win-
dow is given by

 Wi�k� �
1

Vi

Z
d3xeik:xWi�x� �

1

Vi
Wth
?i�k?�Wki�kk�;

(A1)

where the window volume is

 Vi 	
Z
d3xWi�x� � ��

Z
drr2Fi�z� (A2)

and we defined

 Wth
?i�k?� 	

Z
d�d��eik?� cos�Wth

?i��;��; (A3)

 Wki�kk� 	
Z
dreikkrFi�z�: (A4)

Note that the normalized Fourier window Wi�k� ! 1 as
k! 0.

Similarly, in the case of a top hat total window we would
have

 Wth
i �k� �

1

Vth
i

Wth
?i�k?�W

th
ki�kk�; (A5)

with

 V th
i 	

Z
d3xWth

i �x� � ��
Z
drr2Wth

ki�r�: (A6)

From Eqs. (A1) and (A5) we may write

 

Wi�k�
Wth
i �k�

�
V th
i

Vi

Wki�kk�

Wth
ki�kk�

; (A7)

and we can rewrite Eq. (A4) as

 Wki�kk� �
Z dz
H�z�

eikkr�z�Fi�z�: (A8)

We will assume thatH�z� does not change appreciably in
the photo-z bin and, because Fi�z� quickly drops outside
the bin, the values of r that contribute to the integral are
restricted to the range r � ri � �ri=2 with �ri � �zpi =Hi
and Hi 	 H�zpi �, so that

 Wki�kk� �
1

Hi

Z
dzeikkz=HiFi�z� �

Fi�kz;i�
Hi

; (A9)

where we defined kz;i � kk=Hi. Note that Fi�z� can be
expressed as a convolution of the Gaussian selection with
a top hat window in redshift

 Fi�z� �
Z
dzphotWth

ki�z
phot�p�zphotjz�: (A10)

The convolution theorem gives Fi�kz;i� �
Wth
ki�kz;i�p�kz;i� so that Eq. (A9) becomes

 Wki�kk� �
Wth
ki�kz;i�p�kz;i�

Hi
: (A11)

By a similar argument that led to Eq. (A9) we have that
Wth
ki�kz;i� � HiWth

ki�kk� and Eq. (A7) becomes
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Wi�k�
Wth
i �k�

�
V th
i

Vi
p�kz;i�: (A12)

In the limit where r�z� and the photo-z parameters zbias

and �2
z do not change appreciably inside the photo-z bin,

the window volumes in the absence (Vth
i ) and presence of

photo-z errors (Vi) roughly coincide Vi � V th
i / r

2
i �ri, i.e.

the photo-z errors distort the volume element but do not
change its value. Therefore we have

 Wi�k� � Wth
i �k�p�kz;i�: (A13)

The Fourier transform of the top hat window is [26]

 Wth
i �k� � 2eikkri

sin�kk�ri=2�

kk�ri=2

J1�k?ri�s�
k?ri�s

(A14)

and for the Gaussian distribution we have

 p�kz;i� � eikz;iz
bias
i e��

2
z;ik

2
z;i=2: (A15)

Combining these results, we obtain

 Wi�k� � 2 exp
�
ikk

�
ri �

zbias
i

Hi

��
exp

�
�
�2
z;ik

2
k

2H2
i

�



sin�kk�ri=2�

kk�ri=2

J1�k?ri�s�
k?ri�s

(A16)

for the window function.
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