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We present a detailed study of the collapse of a spherical perturbation in DGP braneworld gravity
for the purpose of modeling simulation results for the halo mass function, bias and matter power
spectrum. The presence of evolving modifications to the gravitational force in form of the scalar
brane-bending mode lead to qualitative differences to the collapse in ordinary gravity. In particular,
differences in the energetics of the collapse necessitate a new, generalized method for defining the
virial radius which does not rely on strict energy conservation. These differences and techniques
apply to smooth dark energy models with w 6= −1 as well. We also discuss the impact of the
exterior of the perturbation on collapse quantities due to the lack of a Birkhoff theorem in DGP.
The resulting predictions for the mass function, halo bias and power spectrum are in good overall
agreement with DGP N-body simulations on both the self-accelerating and normal branch. In
particular, the impact of the Vainshtein mechanism as measured in the full simulations is matched
well. The model and techniques introduced here can serve as a practical tool for placing consistent
constraints on braneworld models using observations of large scale structure.

I. INTRODUCTION

Modified gravity models have attracted a great deal of
interest recently as an alternative explanation of the ob-
served accelerated expansion of the Universe [1, 2, 3, 4, 5].
In order for this scenario to work, gravity must be signifi-
cantly modified from General Relativity (GR) on cosmo-
logical scales, but has to reduce to GR locally in order to
satisfy stringent Solar System constraints at a few AU.
Thus, a working modified gravity model has to include a
non-linear mechanism to restore GR in high-density en-
vironments, which can have a noticeable impact on the
formation of large-scale structure on intermediate scales
of a few to tens of Mpc [6, 7, 8, 9].

One popular modified gravity scenario is the DGP
braneworld model [10]. Here, a four-dimensional
Friedmann-Robertson-Walker universe is imbedded as
a brane in five-dimensional Minkowski space. In this
model, gravity is 5-dimensional on the largest scales, and
becomes four-dimensional at scales below the crossover
scale rc, a fundamental parameter of the model. The
modification of the Friedmann equation depends on the
choice of embedding for the brane [11] which yields two
branches of the model: the self-accelerating branch, on
which accelerated expansion occurs at late times with-
out any cosmological constant or dark energy, and the
normal branch where no such acceleration occurs, and a
brane tension or other form of stress-energy with negative
pressure has to be added on the brane.

On scales much smaller than the horizon and crossover
scales, DGP gravity can be described by an effective
scalar-tensor theory [13, 15], where the additional scalar
degree of freedom, the brane-bending mode ϕ is asso-
ciated with displacements of the brane from its back-
ground position. The brane-bending mode yields an ad-
ditional gravitational force which influences dynamics of

non-relativistic particles. On the normal branch of DGP
this force is attractive, while it is repulsive in the self-
accelerating branch. Non-linear interactions of ϕ, via
the so-called Vainshtein mechanism, ensure that it has
tiny effects within the Solar System. For values of rc of
order the current horizon, these interactions become im-
portant as soon as the density contrast becomes of order
unity. Hence, it is crucial to consistently follow the full
brane-bending mode interactions in a cosmological simu-
lation, as has recently been done [8, 16]. While we study
the behavior of ϕ in specific DGP models, the form of
the non-linear interactions is expected to be generic to
braneworld models with large extra dimensions [17, 18].

Given the considerable computational expense of these
simulations, it is worthwhile to develop a model which
captures the main modified gravity effects, enabling fore-
casts and constraints properly marginalized over cosmo-
logical parameters. In the halo model of large structure
[19], which assumes that all matter is in bound dark mat-
ter halos, the abundance and clustering of halos are deter-
mined by the linear power spectrum once characteristic
quantities of the collapse of a spherical perturbation are
determined, namely, the linear collapse threshold and the
virial radius or overdensity.

Spherical collapse is well studied for General Relativity
with a cosmological constant (e.g., [20, 21]), and has also
been explored for quintessence-type dark energy [22, 23].
A first study of spherical perturbations in the context of
DGP was undertaken in [6]. We extend previous studies
by deriving the full ϕ field profile of an isolated mass in
closed form, and by carefully defining the interior and
exterior forces during collapse along with the energetics
implied by the profile. In particular, the potential energy
required for the virial theorem and for the total Newto-
nian energy differ, with the latter not being strictly con-
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served during collapse.1 This lack of a conservation law
also applies to dark energy models with an equation of
state w 6= −1. We show how this problem can be cir-
cumvented by properly defining the condition for virial
equilibrium based on forces.

We discuss the general properties and parameteriza-
tion of DGP models in § II, and the spherical collapse
calculation in § III. The halo model calculations are out-
lined in § IV, and the results and comparisons with sim-
ulations are given in § V. We conclude in § VI. The
Appendix contains derivations of the ϕ profile and other
quantities needed in the collapse calculation, as well as a
discussion of the potential energy and virial theorem in
DGP.

II. DGP MODELS

In this section, we discuss the general properties of
the DGP models considered in this paper. The first
model (sDGP) is in the self-accelerating branch of DGP
with neither a cosmological constant nor spatial curva-
ture. During matter domination and beyond, the modi-
fied Friedmann equation in sDGP reads:

HsDGP(a) = H0

(

√

Ωrc +
√

Ωma−3 + Ωrc

)

, (1)

where

Ωrc ≡
1

4H2
0r2

c

, Ωm ≡ 8πG

3H2
0

ρ̄0, (2)

and ρ̄0 is the average matter density today. This expan-
sion history is clearly different from ΛCDM, and corre-
sponds to an effective dark energy with weff → −1/2 in
the matter-dominated era at high redshifts. For com-
parison, we will also consider an effective smooth dark
energy model (QCDM ) with the same expansion history
as sDGP. Note that this expansion history when com-
bined with the growth of structure near the horizon is
in substantial conflict with data [24]. Moreover, the self-
accelerating branch is plagued by ghost issues [12, 13, 14]
when perturbed around the de Sitter limit. Despite these
problems, sDGP remains an interesting toy model for ac-
celeration from modified gravity.

The second scenario (nDGP) is in the normal branch
of DGP. In order to achieve acceleration, it is necessary to
add a stress-energy component with negative pressure on
the brane. We adopt the model introduced in [25], where
a general dark energy component is added on the brane
but the geometry remains spatially flat. The equation of
state of this dark energy is adjusted so that the expansion

1 The “total energy” here is defined for a Newtonian cosmology
and its non-conservation does not imply violation of covariant
energy-momentum conservation.

history is precisely ΛCDM:

HnDGP(a) = H0

√

Ωma−3 + ΩΛ, (3)

again during matter domination and beyond. While Ωm

quantifies the true matter content in this model, ΩΛ is
to be seen as an effective cosmological constant relevant
for the expansion history only. This construction allows
our nDGP models to evade the otherwise stringent ex-
pansion history constraints on rc with a true cosmolog-
ical constant or brane tension [26]. Likewise it provides
a class of models where the observable impact of force
modification is cleanly separated from the background
geometry. We consider the two models of [25], nDGP–1

with rc = 500 Mpc and nDGP–2 with rc = 3000 Mpc.
For notational simplicity, it is convenient to also phrase

the sDGP Friedmann equation in terms of an effective
dark energy component so that in both cases

H2 =
8πG

3
(ρ + ρeff), (4)

where ρ is the background matter density and ρeff is im-
plicitly defined by Eq. (1) and Eq. (3). In Tab. I, we
summarize the parameter choices for the simulated mod-
els [8, 25]; in case of sDGP, they are from the best-fitting
flat self-accelerating model of [24] to WMAP 5yr, Su-
pernova and H0 data, while for the nDGP models, the
expansion history and primordial normalization match
those of the best-fitting ΛCDM model of [24].

On scales much smaller than both the horizon H−1,
and the cross-over scale rc, DGP reduces to an effective
scalar-tensor theory with the brane-bending mode ϕ rep-
resenting the scalar. Time variation in ϕ induced by the
nonrelativistic motion of the matter involve the dynam-
ical time and can be neglected with respect to spatial
derivatives in this regime. The ϕ field then couples to
matter by contributing to the metric potentials Ψ, Φ de-
fined by the line element

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2 (5)

as

Ψ = ΨN +
1

2
ϕ (6)

Φ = −ΨN +
1

2
ϕ, (7)

where ΨN is the Newtonian potential determined via the
usual Poisson equation

∇2ΨN = 4πGδρ, . (8)

Here and throughout, spatial derivatives are physical, not
comoving.

While the motion of massive, non-relativistic particles
such as cold dark matter is governed by the dynamical
potential Ψ, the propagation of light is determined by
the lensing potential (Ψ−Φ)/2. This combination is not
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affected by ϕ due to the conformal invariance of electro-
magnetism. Hence, in DGP lensing mass is equal to the
“actual” mass, while the dynamical mass differs unless
|ϕ/ΨN | ≪ 1.

In the sub-horizon, quasi-static regime, the equation
for the brane-bending mode can be written as (e.g., [27])

∇2ϕ +
r2
c

3β
[(∇2ϕ)2 − (∇i∇jϕ)(∇i∇jϕ)] =

8πG

3β
δρ, (9)

where the function β(a) is given by

β(a) = 1 ± 2H(a) rc

(

1 +
Ḣ(a)

3H2(a)

)

. (10)

Here, the positive sign holds for the normal branch
of DGP, while the negative sign holds for the self-
accelerating branch. Note that the sign of β determines
whether the force mediated by the brane-bending mode
is attractive (β > 0, nDGP) or repulsive (β < 0, sDGP).

III. TOP-HAT COLLAPSE IN DGP

In this section, we review the dynamics of the collapse
of a top-hat density perturbations in the DGP case. We
follow [6, 7] but pay special attention to the ϕ profile as
well as subleties in the potential energy and virial condi-
tion which are specific to the Vainshtein mechanism (see
Appendix for details).

We assume an initial top-hat density profile of the form

ρ(r) − ρ =

{

δρ, r ≤ R,

0, r > R.
(11)

We show in the Appendix that the top-hat profile remains
top-hat during the collapse despite sweeping out an un-
derdensity outside of R. We further show that forces in-
side of R depend on the enclosed mass perturbation and

TABLE I: Parameters of the simulated DGP cosmologies.

QCDM sDGP ΛCDM nDGP–1 nDGP–2

Ωm 0.258 0.258 0.259 0.259 0.259

ΩΛ (eff.) 0 0 0.741 0.741 0.741

rc [Mpc] ∞ 6118 ∞ 500 3000

Ωrc 0 0.138 0 17.5 0.487

H0 [km/s/Mpc] 66.0 66.0 71.6 71.6 71.6

100 Ωb h2 2.37 2.26

Ωc h2 0.089 0.110

τ 0.0954 0.0825

ns 0.998 0.959

As(0.05 Mpc−1) 2.016 10−9 2.107 10−9

σ8(ΛCDM)a 0.6566 0.7892

aLinear power spectrum normalization today of a ΛCDM model
with the same primordial normalization.

so we can ignore the impact of any compensating under-
density on the dynamics of collapse. Note that this is
unique to a top-hat density and does not hold for other
density profiles, in which case the collapse will not be
self-similar anymore.

Given ρ and R, there are two important mass parame-
ters: the total mass M = 4πρR3/3 and the mass pertur-
bation δM = 4πδρR3/3. The first is conserved during
collapse, while the second is the source of the ϕ field
and gravitational potential, and is therefore useful in ex-
pressions involving the field profile. With the definition
δ = δρ/ρ, the two masses are related by

δM =
δ

1 + δ
M, (12)

such that they coincide at high overdensity.

A. Collapse Dynamics

Given a metric specified by Ψ, Φ, conservation of
energy-momentum is unchanged in DGP and leads to
the same equation of motion for the density perturba-
tion as in ordinary gravity. On scales much smaller than
the horizon

δ̈ − 4

3

δ̇2

1 + δ
+ 2H δ̇ = (1 + δ)∇2Ψ, (13)

where H = ȧ/a denotes the Hubble rate, and dots de-
note derivatives with respect to time. The modification
of gravity enters through the dynamical potential Ψ: in
general relativity (GR), Ψ = ΨN [Eq. (8)], while in DGP
Ψ receives an additional contribution from the brane-
bending mode ϕ following Eq. (6).

The full profile of ϕ around a top-hat perturbation is
derived in the Appendix. The key result is that in the in-

terior of the top-hat, ∇2ϕ is constant like ∇2ΨN . Hence,
a pure top-hat will stay top-hat, so that the Eq. (13) can
be considered as an ordinary differential equation involv-
ing a spatially constant δ. Note that as shown in § A7
this is unique to a top-hat and will be violated as soon as
more general spherically symmetric profiles are consid-
ered. Moreover the implied scaling with the local matter
density is not true for the exterior of the top-hat (cf. [28]).
We discuss this issue further in the Appendix.

While ∇2ϕ is spatially constant for r ≤ R, it has a
nontrivial dependence on δρ (see Appendix). This depen-
dence can be cast in terms of an effective gravitational
constant:

∇2ϕ = 8π∆GDGP(R/R∗)δρ, (14)

∆GDGP(x) =
2

3β

√
1 + x−3 − 1

x−3
G, (15)

where the Vainshtein radius

R∗ =

(

16GδMr2
c

9β2

)1/3

. (16)
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If R ≫ R∗, ∆GDGP = G/(3β) and ϕ is simply propor-
tional to the Newtonian potential, ΨN (r) = GδM/r. We
call this the linearized limit as it applies to the δM ≪ M
limit.

In the opposite limit relevant for δρ/ρ ≫ 1, ∆GDGP ∝
(R/R∗)

3/2 ≪ 1. This is the Vainshtein limit and here
ϕ ∼ GδM/R∗ is to leading order constant throughout
the perturbation (§ A2).

We can use mass conservation

M =
4π

3
R3ρ(1 + δ) (17)

to rewrite the top-hat equation of motion in Eq. (13) as

R̈

R
= H2 + Ḣ − 1

3
∇2Ψ

= −4πG

3
[ρ + (1 + 3weff)ρeff ]

−4πGDGP(R/R∗)

3
δρ, (18)

where GDGP ≡ G + ∆GDGP. In the second line, the
effective equation of state is defined to be −3(1+weff) ≡
d ln ρeff/d lna. These terms account for the effect of the
background expansion.

The terms involving the expansion history can be seen
as coming from an effective potential obtained by expand-
ing the Friedmann-Robertson-Walker metric around the
center of the perturbation [20, 22]:

Ψeff = −1

2

(

ä

a

)

r2 =
2πG

3
(ρ + (1 + 3weff)ρeff) r2 ,

(19)
up to a constant that is irrelevant for the dynamics (see
A 7). Note that ∇2Ψeff is spatially constant and so its
effect also preserves the top-hat profile.

Eq. (18) can then be written in compact form as

R̈

R
=

1

3
(∇2Ψeff + ∇2Ψ). (20)

Note that the pieces involving the matter density com-
bine as

∇2(Ψeff + ΨN) = 4πG[ρ + (1 + 3weff)ρeff ], (21)

so as to reflect the total matter density ρ inside the top-
hat as one would expect from Newtonian mechanics (see
Appendix for further discussion).

B. Collapse calculation

We numerically solve the spherical collapse equa-
tion (18) following [7]. Specifically, we start at an initial
scale factor ai = 10−5, using ln a as a time variable, and
replacing R with y defined as

y ≡ R

Ri
− a

ai
, (22)

where Ri is the initial radius of the perturbation. Hence,
we start with y = 0 and y′ = −δi/3 as given by linear
theory in the matter dominated epoch in terms of the
initial density fluctuation δi. Here, we have set ∆GDGP =
0 at ai, since the effects of force modifications in DGP
are negligible at such an early time.

With these initial conditions, we can solve Eq. (18) as

y′′ = −H ′

H
+ y′(1 +

H ′

H
)y

−ΩmH2
0a−3

2H2(a)

GDGP(R/R∗)

G

(

y +
a

ai

)

δ. (23)

The overdensity relative to the background δ is given by

δ(y, a) = (1 + δi)
(ai

a
y + 1

)−3

− 1. (24)

Fig. 1 shows the result of solving this equation in the
different models (bottom panel). We adjust δi so that
collapse, where R = 0 or y = −a/ai, occurs at a = 1.
Turnaround, where dR/d ln a = 0 or y′ = −a/ai, occurs
at a = 0.54 − 0.56 for these models.

Fig. 1 also shows the evolution of the gravitational
force strength GDGP/G. Since collapse is defined by
δ → ∞ at a → a0, the perturbation eventually becomes
much smaller than its Vainshtein radius in all models, so
that GDGP → G. Thus, the evolution of forces between
turnaround and collapse is significant. This evolution
raises the issue of the conservation of total energy of the
perturbation during collapse. We will return to this ques-
tion in the Appendix.

We then extrapolate the initial overdensity δi to a0 = 1
using the linear growth equation, obtained from lineariz-
ing Eq. (13):

δ̈ + 2H δ̇ = 4πGlinρ δ, (25)

where

Glin(a) =

[

1 +
1

3β(a)

]

G (26)

is the linearized value of GDGP for R/R∗ ≫ 1 in Eq. (23).
The resulting overdensity is the linearly extrapolated col-
lapse overdensity, which we call δc.

To expose the impact of the Vainshtein mechanism,
we will also consider linearized DGP collapse (note that
this it not linearized collapse) as the limit of no non-
linear ϕ interactions. In this case, we replace GDGP with
Glin in Eq. (23). Note that the Vainshtein mechanism
is strongest for a spherically symmetric collapse and ab-
sent for a planar collapse and so these two cases should
encompass the range of possibilities in the cosmological
context [8, 29].

For a top-hat, the Vainshtein radius in units of R is
given by R/R∗ = (ǫδ)−1/3, where ǫ is defined as

ǫ =
8

9β2(a)
(H0rc)

2 Ωm a−3, (27)
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FIG. 1: Evolution of gravitational force GDGP/G as a function
of a for perturbations collapsing at a0 = 1 in the different
DGP models (top panel). In each case, the thin lines show
the linearized force modification Eq. (26) whereas the thick
lines show the nonlinear case. We also show the evolution
of the scaled radius R/Ri of the perturbation in the bottom
panel.

such that 1/ǫ represents the density threshold at which
the top-hat perturbation crosses into its own Vainshtein
radius. Fig. 2 shows ǫ and ǫδ as a function of a for a
range between turnaround (a ∼ 0.5) and collapse (a = 1)
for the simulated models of Tab. I. In the nDGP models
this threshold increases substantially toward the present
and the Vainshtein suppression does not saturate until
quite late in the collapse. In fact in the nDGP-1 model,
we shall see that the perturbation virializes before the
Vainshtein mechanism can operate.

C. Virial Radius and Overdensity

Spherical top-hat collapse formally predicts a collapse
to a singularity at R → 0. In reality we expect that pro-
cesses such as violent relaxation will eventually establish
virial equilibrium. More specifically, the virial theorem
relates the kinetic energy of the body

T =

∫

d3x
1

2
ρv2 =

3

10
MṘ2, (28)

where the last equality holds for a top-hat, to the trace
of the potential energy tensor

2T + W = 0, (29)

FIG. 2: Top panel: The non-linearity parameter ǫ. The Vain-
shtein mechanism operates once ǫ δ & 1. Bottom panel: ǫ δ for
a top-hat perturbation that collapes at a0 = 1 in each model.

with the definition

W ≡ −
∫

d3x ρm(x) x · ∇Ψ. (30)

Note that W depends explicitly on forces only and some
care must be taken in relating it to the potential or bind-
ing energy of the perturbation for contributions from the
brane bending mode ϕ (see Appendix A 3). We show
there that W can be broken up as a sum of three contri-
butions to the dynamics,

W = −3

5

GM2

R
− 4πG

5
(1 + 3weff)ρeffMR2

−3

5

∆GDGPMδM

R
. (31)

We determine the virial radius Rvir of the perturba-
tion as the radius during collapse (after turnaround) at
which Eq. (29) is satisfied. In the literature conserva-
tion of total energy is often used to set this condition.
One can easily show that if energy conservation holds
strictly, our determination of Rvir agrees with the usual
definition. However, in the presence of an evolving ρeff

and ∆GDGP, energy is no longer strictly conserved over
a Hubble time. Note that this problem occurs in dark
energy models as well but is usually ignored under the
assumption that weff ≈ −1. However, this procedure is
not justified when considering modifications due to a fi-
nite 1 + weff . Differences between our definition of Rvir

and the one relying on energy conservation are of the
same order as the differences induced by 1 + weff . We
discuss these issues further in Appendix A 5-A 6.
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Once Rvir is calculated, we have the density of the
perturbation at this radius, ρvir = ρ(avir)[1 + δ(Rvir)],
where avir is the scale factor at which the perturbation
reaches Rvir during collapse. For collapse at a0 = 1,
avir ≈ 0.91 − 0.93 for the simulated models. One then
assumes that the perturbation maintains this “virial den-
sity” while the background continues to decrease. The
final virial density with respect to the background, ∆vir

at a0 is then given by referring this density to the back-
ground matter density at a0:

∆vir = [1 + δ(Rvir)]

(

a0

avir

)3

. (32)

Tab. II shows the resulting spherical collapse parameters,
δc and ∆vir, for the different models and gravitational
modifications: unmodified (GR collapse), valid for GR
with smooth dark energy; the expression Eq. (15) (DGP

collapse); and Eq. (26) (linearized DGP collapse).

IV. HALO MODEL PREDICTIONS

We now briefly describe how we move from spherical
collapse predictions of the linear collapse threshold δc

and the virial overdensity ∆vir summarized in Tab. II
to predictions of the halo mass function, bias, and non-
linear power spectrum. For further details, see [7].

In the Press-Schechter approach, one assumes that all
regions with δ > δc in the linearly extrapolated initial
density field collapse to form bound structures (halos).
The fraction of mass within halos at a given mass is
then determined by the variance of the linear density
field smoothed at that scale. Here, we adopt the Sheth-
Tormen (ST) prescription [30] for the halo mass function
predictions, which enables a direct use of our spherical
collapse results. Also, we previously found a good match
to the ST mass function and bias in our ΛCDM simula-
tions [7].

The ST description for the comoving number density
of halos per logarithmic interval in the virial mass Mvir

is given by

nln Mvir
≡ dn

d lnMvir
=

ρ

Mvir
f(ν)

dν

d ln Mvir
, (33)

TABLE II: Spherical collapse parameters for the cosmologies
defined in Tab. I for collapse at a0 = 1.

Collapse type/Model: sDGP nDGP-1 nDGP-2

δc GR 1.662 1.674 1.674

DGP 1.627 1.687 1.688

DGP lin. 1.676 1.678 1.672

∆vir GR 399.9 372.3 372.3

DGP 467.1 300.4 322.8

DGP lin. 436.4 311.7 339.1

where the peak threshold ν = δc/σ(Mvir) and

νf(ν) = A

√

2

π
aν2[1 + (aν2)−p] exp[−aν2/2] . (34)

Here, the virial mass is defined as the mass enclosed at
the virial radius Rvir. σ(M) is the variance of the linear
density field convolved with a top hat of radius R that
encloses M = 4πR3ρ/3 at the background density

σ2(R) =

∫

d3k

(2π)3
|W̃ (kR)|2PL(k) , (35)

where PL(k) is the linear power spectrum and W̃ is the
Fourier transform of the top hat window. The nor-
malization constant A in Eq. (34) is chosen such that
∫

dνf(ν) = 1. We adopt the standard parameter values
of p = 0.3 and a = 0.75 throughout.

The linear bias corresponding to the ST mass function,
obtained in the peak-background split, is given by [30]

blin(Mvir) ≡ b(k = 0, Mvir)

= 1 +
aν2 − 1

δc
+

2p

δc[1 + (aν2)p]
. (36)

By assuming a specific form of halo density profiles,
we can rescale mass definitions from the virial mass Mvir

to M200, the mass definition used in the simulation mea-
surements, as outlined in [31] (again, all overdensities are
referred to the background matter density). We use this
approach to compare the scaling relation predictions to
the simulations in §V. For the halo profiles, we take an
NFW form [32],

ρNFW(r) =
ρs

r/rs(1 + r/rs)2
, (37)

where rs is the scale radius of the halo and the normaliza-
tion ρs is given by the virial mass Mvir. We parametrize
rs via the concentration cvir ≡ Rvir/rs given by [33]

cvir(Mvir, z = 0) = 9

(

Mvir

M∗

)−0.13

, (38)

where M∗ is defined via σ(M∗) = δc. Since generally
Rvir, R200 ≫ rs, the precise form of the concentration
relation has a negligible impact on the mass rescaling. In
the following, when no specific overdensity is given we
implicitly take M = M200, e.g.

nln M ≡ dn

dlnM200
= nlnMvir

dlnMvir

dlnM200
. (39)

We also consider the non-linear matter power spectrum
calculated in the halo model approach (see [19] for a re-
view). Since all matter is assumed to be within bound
halos, the matter power spectrum can be decomposed
into 1-halo and 2-halo terms,

Pmm(k) = I2(k)PL(k) + P 1h(k), (40)
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FIG. 3: Deviation in the halo mass function at z = 0 of
sDGP from a dark energy model with the same expansion
history (QCDM). The points show measurements in the full
and linearized DGP simulations, the band shows the Sheth-
Tormen + spherical collapse prediction range between full
DGP collapse (blue dashed line) and linearized DGP collapse.

where

P 1h(k) =

∫

d lnMvir nln Mvir

M2
vir

ρ̄2
m

|y(k, Mvir)|2 , (41)

I(k) =

∫

d lnMvir nlnMvir

Mvir

ρ̄m
y(k, Mvir)blin(Mvir) .

Here, y(k, M) is the Fourier transform of an NFW den-
sity profile truncated at Rvir, and normalized so that
y(k, M) → 1 as k → 0. Note that with the ST mass
function and bias, limk→0 I(k) = 1.

V. RESULTS

We compare our spherical collapse and halo model
predictions with the results of N-body simulations pre-
sented in [8, 25] of the sDGP and nDGP+DE models (see
§ II, Tab. I). In addition to the full simulations which
solve the non-linear ϕ equation (9), simulations using
the linearized ϕ equation have been performed through
Eq. (26).

We always compare observables measured in the DGP
simulations with those of GR simulations with the same
initial conditions and expansion history. In this way, cos-
mic variance as well as systematic issues cancel out to a
large extent.

FIG. 4: Same as Fig. 3, for the two normal branch DGP +
dark energy models nDGP–1 (top) and nDGP–2 (bottom) rel-
ative to ΛCDM. The linearized DGP simulation results have
been displaced horizontally for clarity.

A. Halo Mass Function

Fig. 3 shows the deviation of the halo mass function
from QCDM measured in the sDGP and linearized sDGP
simulations, and the spherical collapse predictions. Fig. 4
shows the corresponding results for the nDGP+DE mod-
els. The spherical collapse predictions work well in both
cases and in particular match the shape of the deviations
and the relative impact of the Vainshtein mechanism. In
both cases, they somewhat underestimate the size of the
deviations at a fixed mass, corresponding roughly to a
shift in lg M200 of ∼ 0.3 − 0.5.

In the nDGP models, force modifications are stronger
(see Fig. 2), leading to larger deviations in the mass func-
tion from the corresponding GR model with the same ex-
pansion history. In particular, the abundance of massive
halos M200 & 1014 M⊙/h is significantly enhanced. This
behavior is due to the exponential sensitivity of the mass
function to ν = δc/σ(M) at the high-mass end, and is
similar to what was seen in the large-field f(R) models
in [7].

Furthermore, the density threshold ǫ−1 for the onset of
the Vainshtein mechanism is higher in the nDGP models
than the sDGP model, so that the mass function is less
affected by the Vainshtein mechanism in nDGP. This is
borne out by both simulations and spherical collapse pre-
dictions: the relative spread in the predictions between
the DGP and linearized DGP case shrinks considerably
when going from large to small rc, i.e. from sDGP to
nDGP–2 to nDGP–1.
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FIG. 5: Linear bias blin of dark matter halos measured in the
ΛCDM and QCDM simulations at z = 0 (see § V B), and the
prediction of the Sheth-Tormen prescription.

Finally, since the full spherical collapse predictions al-
ways slightly underestimate the deviations, they can be
used to place conservative limits on DGP braneworld sce-
narios from measurements of the halo mass function e.g.
from massive clusters [34, 35, 36]. Alternatively, the pre-
dictions can be recalibrated based on simulations by in-
troducing a constant shift in lg M200 ∼ 0.3 − 0.5.

B. Halo Bias

This section presents new results on the clustering of
halos in the simulations of [8, 25]. We extract the linear

halo bias blin(M) from our simulations as described in [7].
For halos of a given logarithmic mass range in a box of
size Lbox, we first obtain the halo bias b(k, M) by divid-
ing the halo-mass cross spectrum Phm(k) by the matter
power spectrum for each simulation run.2 In order to re-
move trends from the non-linearity of the bias, we then fit
a linear relation to b(k, M) = blin(M) + a(M) k between
the minimum k (the fundamental mode of the box) and
∼ 15kmin, where b(k, M) is the combined measurement
from all boxes. The same fitting procedure is applied to
the run-by-run ratio of bDGP(k, M)/bGR(k, M).

2 Note that the definition of bias adopted will differ from alter-
nate choices such as (Phh/Pmm)1/2 or Phh/Phm in the non-linear
regime where the correlation coefficient between halos and mat-
ter can differ from unity.

FIG. 6: Relative deviation of the linear bias ∆blin/blin in the
full and linearized sDGP simulations from that of the QCDM
simulations as a function of halo mass at z = 0. The linearized
simulation points have been displaced horizontally for clarity.
The band shows the Sheth-Tormen + spherical collapse pre-
diction range between full DGP collapse (blue dashed line)
and linearized DGP collapse.

We then bootstrap over many realizations of the set of
simulations, performing the fit for every realization. We
use the average of the fit parameter blin(M) as estimate
of the linear bias, and its spread as an estimate of the
error. Note that in case of the nDGP simulations, we
only have 3 runs per box size, so that the error estimate
itself has a large uncertainty.

We show the linear bias blin(M) as a function of halo
mass for the QCDM and ΛCDM simulations themselves
in Fig. 5. As the halo mass function deviates significantly
from a pure power-law, especially at the high-mass end,
we plot the bias measurements at the position of the mea-
sured average lg M200 of the halos. The Sheth-Tormen
prediction of Eq. (36), using the parameters from Tab. II
and rescaled from Mvir to M200 in each case, matches the
simulations well for masses up to 1014 M⊙/h. At higher
masses it overpredicts the bias in the simulations, though
the deviation is a the level of 1− 2σ. Note that halos are
more biased at a given mass in QCDM than in ΛCDM,
due to the reduced growth and smaller power spectrum
amplitude in this model.

This trend continues in the DGP simulations: in
sDGP, gravity is further weakened by the repulsive brane-
bending mode, so that the linear halo bias at fixed mass
is increased by ∼ 10% compared to QCDM (Fig. 6).
There is a hint that halos are slightly higher biased in
the linearized simulations compared to the full simula-
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FIG. 7: Same as Fig. 6, for the two normal branch DGP +
dark energy models nDGP–1 (top) and nDGP–2 (bottom),
relative to ΛCDM.

tions, though both are consistent given the error bars.
The spherical collapse prediction matches the simulation
results over the whole mass range. The full DGP collapse
(blue dashed line) marks the lower edge of the shaded
band, while the linearized DGP collapse corresponds to
the upper edge, in accordance with expectations. The
spread of the predictions is similar in magnitude to the
tentative differences between linearized and full simula-
tions.

For the nDGP models, the opposite trend in the bias is
seen (Fig. 7): halos are less biased at a given mass. While
the full and linearized simulation results are consistent
in the nDGP models, showing no sign of the Vainshtein
mechanism affecting the linear halo bias, they both fol-
low the spherical collapse prediction very well. This is in
accordance with the good description of the mass func-
tion results in § VA. Also, given the small spread in the
spherical collapse predictions, we do not expect to see
any differences between full and linearized simulations
for the nDGP models.

C. Non-linear matter power spectrum

We can now assemble the ingredients of the halo model:
the mass function, bias, and profile of halos, to predict
the non-linear matter power spectrum following § IV. We
assume that the inner parts of the density profiles of halos
are not affected by DGP, as indicated by simulations [25].
More precisely, one can assume that for a halo of given
mass M200, the scale radius rs (Eq. (37)) is the same

FIG. 8: Deviation in the matter power of the sDGP model
from QCDM at z = 0. The points show measurements in the
full and linearized DGP simulations, while the band shows
the halo model prediction based on spherical collapse and the
Sheth-Tormen prescription (between DGP [blue dashed line]
and linearized DGP collapse). The long-dashed line shows
the renormalized perturbation theory prediction from [29].

in DGP as in GR. Adopting Eq. (38) for the concentra-
tion cvir = Rvir/rs in GR, we have for the concentration
relation in DGP:

cvir,DGP(M) =
R∆(M)

∣

∣

∆vir(DGP)

R∆(M)
∣

∣

∆vir(GR)

cvir(Mvir,GR), (42)

where R∆(M) = (3M/(4π∆ρ))1/3, and Mvir,GR is the
virial mass in GR that corresponds to a virial mass of
M in DGP. We find that for all DGP models considered
here, the concentration cvir,DGP defined by Eq. (42) is
within 3% of the standard relation cvir(Mvir,DGP), which
has a negligible effect on the power spectrum on the scales
probed by the simulations. Hence, we leave the concen-
tration relation Eq. (38) unchanged in our power spec-
trum predictions.

Fig. 8 shows that the sDGP simulation results are
matched very well: the DGP collapse prediction (blue
dashed line) is close the to full simulation results, while
the linearized DGP collapse is close to the linearized sim-
ulations. The renormalized perturbation theory predic-
tion of [29] which uses a completely different approach
to take into account the non-linear interactions of the
brane-bending mode is also quite close to our DGP col-
lapse calculation.

The match to the power spectrum in the nDGP simu-
lations (Fig. 9) is somewhat worse, showing discrepan-
cies of ∼ 30% for nDGP–1 and ∼ 10% for nDGP–2.
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FIG. 9: Same as Fig. 8, for the two normal branch DGP
+ dark energy models nDGP–1 (top) and nDGP–2 (bottom)
relative to ΛCDM. The long-dashed lines show the predictions
of halofit using the linear DGP power spectrum.

In particular, discrepancies can be seen in the quasi-
linear to non-linear transition, k ∼ 0.1 − 1 h/Mpc for
nDGP–1. The simplified 1-halo/2-halo split in the halo
model breaks down on these scales. We also show the
predicted non-linear power spectra using halofit [37]
in combination with the linear DGP power spectra at
z = 0. Note that for k & 0.01 h/Mpc, the linear DGP
power spectrum is identical to that of a ΛCDM model
with higher linear normalization. While the match to
the simulations is better than our spherical collapse pre-
dictions at k . 0.1 h/Mpc, the deviations grow towards
smaller scales so that halofit is a worse fit to the simula-
tions than the spherical collapse model for k & 1 h/Mpc.
Clearly, it is not trivial to model the simulation results
for ∆P (k)/P (k) to better than ∼ 10%.

While the overall magnitude of the power spectrum
enhancement in nDGP is not matched, the shape of
∆P (k)/P (k) is matched quite well. Furthermore, the ef-
fect of the Vainshtein mechanism on the power spectrum
is predicted accurately, as can be seen by comparing the
spread in the spherical collapse predictions to the differ-
ence between full and linearized simulation results. These
findings indicate that it should be possible to rescale lin-
earized DGP simulation results with the relative Vain-
shtein suppression calculated from spherical collapse.

VI. CONCLUSIONS

By studying the collapse of a spherical perturbation
under DGP braneworld gravity, we have shown how sim-
ulation results on the mass function, halo bias and power
spectrum can be understood semi-analytically. In DGP
gravity, force modifications are carried by the scalar
brane-bending mode. The global properties of the re-
sponse of the brane-bending mode to matter control how
the Vainshtein mechanism modifies force and energy con-
ditions during collapse. These conditions are important
for the calculation of virial equilibrium (see the Appendix
for detailed discussions of these results).

In particular, the presence of evolving modifications to
the gravitational force either through the brane bending
mode or through the background expansion violate con-
servation of Newtonian total energy for traditional defini-
tions of the potential energy contribution. This violation
applies to smooth dark energy models with w 6= −1 as
well. We introduce a new, general technique for defin-
ing the virial radius which does not rely on strict energy
conservation.

Under the halo model, these spherical collapse predic-
tions give rise to predictions for the mass function, halo
bias and power spectrum. We have shown that these
predictions are in good qualitative agreement with DGP
N-body simulations on both the self-accelerating and nor-
mal branch. In particular, the use of spherical collapse
for the mass function always provides slightly conserva-
tive limits on mass function deviations when compared
with the simulations. Hence the semi-analytic techniques
introduced here can be used as a practical tool for extend-
ing simulation results for the purpose of studying param-
eter constraints on braneworld models from observations
of the mass function.

While the absolute power spectrum agreement is not
quite as good, these techniques can still be useful in com-
bination with linearized DGP simulations. Since our
spherical collapse predictions appear to capture accu-
rately the impact of the Vainshtein mechanism on the
power spectrum, they could provide an effective way of
taking non-linear interactions into account in results ob-
tained from linearized DGP simulations. Such simula-
tions are very easy to implement and an order of mag-
nitude cheaper computationally than the full DGP sim-
ulations. Likewise they are more readily extendable to
higher resolution and can be used to cover a wider range
in parameter space.
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APPENDIX A: TOP-HAT OVERDENSITY IN

DGP

In this Appendix we present in detail the various as-
pects of top-hat perturbations in DGP used in the main
text. We begin by reviewing the techniques introduced
in Ref. [6] for the brane bending field but pay special at-
tention to the matching of the various solutions as well
as derive a closed form expression for the global field pro-
file. This global profile is used to study virial equilibrium
(§A3) and potential energy (§A4). We discuss subtleties
due to the relationship between the two and violations of
Newtonian energy conservation in §A5 and their impact
on defining the virial overdensity in §A6. Finally we ex-
amine the impact of density compensation in the exterior
of the top-hat in §A7 in light of the lack of a Birkhoff
theorem in DGP.

1. Spherical Symmetry

We begin by assuming that the density perturbation
δρ(r) is spherically symmetric but otherwise arbitrary.
Given the induced spherical symmetry in the field solu-
tion, the field equation (9) reduces to

1

r2

d

dr
r2 dϕ

dr
+

r2
c

3β

[

4

r

d2ϕ

dr2

dϕ

dr
+ 2

(

1

r

dϕ

dr

)2
]

=
8πG

3β
δρ. (A1)

Integration of the field equation (A1) over r2dr then
yields

r2 dϕ

dr
+

2

3β
r2
cr(

dϕ

dr
)2 =

2

3β
Gm(r), (A2)

with the enclosed mass perturbation defined as

m(r) ≡ 4π

∫ r

0

r′2δρ(r′) dr′. (A3)

If δρ(r) = 0 for r > R, the enclosed mass fluctuation
m(r > R) is the total mass fluctuation δM .

Note that the ∇i∇jϕ term in Eq. (9) is critical in ob-
taining this solution since it causes cancelation of the
integral terms when integrating by parts, leaving only
the boundary terms for the non-linear piece. The field

solution interior to r has no direct effect on the solution
at r. Like Newtonian dynamics, only the enclosed mass
not the enclosed field matters. This property is crucial
for maintaining the linearity of the field solution at large
r in the presence of strong non-linearity at small r.

Since m → δM at distances beyond which there are no
density fluctuations, and assuming that ϕ(∞) = 0, we
can immediately see that the far exterior solution must
be to leading order ϕ ∝ 1/r. Given an increasingly small
non-linear term, this requires

lim
r→∞

ϕ = − 2

3β

GδM

r
. (A4)

For the small r solution, the key simplification is that
the force modification dϕ/dr is now an analytic function
of the enclosed mass

dϕ

dr
=

3βr∗(r)

4r2
c

g(r/r∗) (A5)

where the Vainshtein radius of the enclosed mass is

r∗(r) =

(

16Gm(r) r2
c

9β2

)1/3

(A6)

and

g(x) = x[
√

1 + x−3 − 1] . (A7)

Note that in general r∗ is a function of r and reflects the
enclosed mass, and r3

∗/r3 the average density, not the
local density. The latter would be implied by setting

(∇i∇jϕ)2 = c (∇2ϕ)2 (A8)

with c =const. in the original field equation. However,
doing so would violate the r → ∞ limit. In particular,
the far field limit in this approximation would reveal the
presence of a Vainshtein screened mass instead of the true
mass perturbation δM . Small scale non-linearity in the
density field would then no longer average to give the
required linear perturbations on large scales [38]. Such
an approximation or any that relates the field solution
to the local density should not be used in a cosmological
context (cf. [25, 28]).

2. Field Profile

We now assume a top-hat spherical perturbation
of radius R with a constant density enhancement δρ
[Eq. (11)]. As usual we neglect any compensating under-
density swept out by the prior evolution of the top-hat.
Since the force modifications within the top-hat only de-
pend on the enclosed mass m(r) and not the exterior,
the compensation does not impact the dynamics. It can
however influence the field profile r > R and we return to
this point in §A7. For the pure top-hat, m(r ≥ R) = δM
and we can solve for the profile ϕ(r) in closed form.
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First let us consider the exterior solution at r > R. In
the exterior m=const. and there is a single Vainshtein
radius R∗ = r∗(R). Defining a new variable x = r/R∗,
we can write Eq. (A5) as

dϕ

dx
= Ag(x), (A9)

where

A =
3β

4

(

R∗

rc

)2

=
4

3β

GδM

R∗

, (A10)

and we can obtain the full exterior field solution as

ϕ(r) = −
∫ ∞

r/R∗

dϕ

dx
dx (A11)

=
Ax2

2

{

2F1[−1/2,−2/3, 1/3,−1/x3] − 1
}

.

The solution of course recovers Eq. (A4) in the limit of
x ≫ 1

lim
x≫1

ϕ = − A

2x
= − 2

3β

GδM

r
. (A12)

Note that the constant A is −2ϕ∗ where ϕ∗ is the lin-
earized field profile evaluated at the Vainshtein radius.

In the opposite limit x ≪ 1

lim
x≪1

ϕ = −A(C0 − 2x1/2). (A13)

The constant piece,

C0 ≡ A−1

∫ ∞

0

dx
dϕ

dx

=
Γ[1/3]Γ[1/6]

4
√

π
≈ 2.103, (A14)

therefore dominates, and

lim
x≪1

ϕ ≈ −4C0

3β

GδM

R∗

= const. (A15)

However field gradients are determined solely by the x1/2

term. Since particle dynamics depend on forces and
hence field gradients, the existence of a constant term
in addition to the x1/2 term in the field profile makes an
important difference when comparing energy conditions
like conservation laws and dynamical considerations like
virial equilibrium, as we shall see. This distinction is of-
ten neglected in the literature (e.g. [27, 28]). Fig. 10
shows |ϕ(δM ; R)| in units of the linearized (x ≫ 1) value
as a function of R/R∗. Note the strong suppression of
the surface potential and its saturation for R ≪ R∗.

The field interior to the top-hat can be similarly solved.
Since r∗(r) ∝ r for a constant density profile, Eq. (A5)
implies dϕ/dr ∝ r and hence

ϕ(r) − ϕ(0) = Br2. (A16)

FIG. 10: Surface field profile |ϕ(δM, R)| (solid curve, see
Eq. (A18)) in units of (2/3β)GδM/R∗, the linearized value
at R∗, as function of xR = R/R∗. Parameters are for the
sDGP model (a = 1). The dotted line shows the linearized
solution, x−1

R in these units. In the Vainshtein limit xR ≪ 1,
ϕ(δM, R) approaches a constant. ϕ(δM, R) also determines
the binding energy Uϕ (§ A4).

We see from substitution into Eq. (A1) that

B =
A

2RR∗

g(xR), (A17)

solves the field equation. Here xR = x(R) = R/R∗.
Note that dϕ/dr is automatically matched at r = R to
the exterior solution Eq. (A9). The remaining condition
is that the interior field solution at r = R,

ϕ(R) =
A

2
xRg(xR) + ϕ(0) (A18)

match the exterior solution from Eq. (A11). Fig. 11
shows the resulting ϕ profile for different values of xR, in
comparison with the Newtonian potential ΨN . Again it
is interesting to examine the xR ≫ 1 and xR ≪ 1 limits
of Eq. (A18). In the former case we regain the linearized
(Newtonian) expectation that the central value is 3/2 of
the surface value

lim
xR≫1

ϕ(0) = −GδM

βR
. (A19)

In the opposite, “Vainshtein” limit, the central field like
the surface field is independent of R to leading order

lim
xR≪1

ϕ(0) ≈ ϕ(R) ≈ −4C0

3β

GδM

R∗

. (A20)
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FIG. 11: Field profile ϕ(r) for a top-hat mass of radius R
in units of the Newtonian surface potential GδM/R, for two
values of the Vainshtein radius R∗/R = 10, 100R. ϕ was
scaled by 3β/2 so that the linearized field solution agrees with
the Newtonian potential ΨN shown as the long-dashed line.

The central field value, which determines the potential
energy associated with the fluctuation is therefore sup-
pressed by (4C0/3)R/R∗ from the linearized expecta-
tion. Moreover the change in the field interior or near
the object, important for forces, is further suppressed by
(R/R∗)

1/2. We discuss the consequences of these features
of the field profile for virial equilibrium and the potential
energy in the following section.

The force suppression can be recast in terms of an ef-
fective Newton constant in the Poisson equation for the
ϕ field. Note that in the interior solution, the two pieces
of the nonlinear term in Eq. (9) combine to form

(∇2ϕ)2 − (∇i∇jϕ)2 =
2

3
(∇2ϕ)2 . (A21)

Since the field equation is then algebraic in ∇2ϕ, one can
solve for ∇2ϕ to obtain:

∇2ϕ = 8π∆GDGP(R/R∗) δρ, (A22)

∆GDGP(x) =
2

3β
g(x)x2G

=
2

3β
[
√

1 + x−3 − 1]x3G. (A23)

Hence, in combination with the Newtonian piece, the in-
terior solution can be phrased as possessing an effective
GDGP = G + ∆GDGP modification to gravity. Further-
more x−3 ∝ δ and so GDGP is a function of the local
density inside the top-hat. This relation is specific to

the interior of a top hat and is not simply a spherically
symmetric approximation as the exterior solution shows.
More generally, we can see by taking the derivative of
Eq. (A5) that

∇2ϕ = 8π∆GDGP(r/r∗) δρ(r) +
2Gm(r)

r2

d

dr
[x2g(x)].

(A24)
Note that ∆GDGP, m(r) and r∗(r) are not local functions
of the density field but involve the full interior profile. We
shall return to this point in §A7.

3. Virial Equilibrium

The virial theorem arises from integrating over space
the first moment of the Boltzmann equation, i.e. from the
equation of momentum conservation (see e.g. [39], §4.3).
Despite its usual association with potential energy, the
virial theorem is inherently a force balance equation and
is the collisionless analogue of hydrostatic equilibrium.
Thus the virial condition is immune to ambiguities in
the definition of potential energy that we shall discuss in
§A4.

The virial theorem reads

W ≡ −
∫

d3x ρm(x) x · ∇Ψ = −2T, (A25)

where W receives contribution from the Newtonian grav-
ity of the overdensity, the effective background term, and
the brane-bending mode ϕ. For a spherically symmetric
top-hat each contribution to Ψ yields

Wi = −3M

∫ R

0

r2dr

R3
r
dΨi

dr
, (A26)

where Ψi stands for either ΨN , Ψeff , or Ψϕ ≡ ϕ/2. Thus,
any constant offsets in Ψi do not contribute to W . In
particular the constant term in ϕ in the Vainshtein limit
of Eq. (A20) and its implied potential energy does not
enter into the virial condition.

In the case of the Newtonian contribution, WN defined
in this way is given by:

WN = −3

5

GMδM

R
, (A27)

For the effective contribution of the background Ψeff ∝ r2

and

Weff = −4πG

5
[(1 + 3weff)ρeff + ρ]MR2. (A28)

Note that in our convention, we have included the ρ term
in Weff rather than WN . Adding the two contributions
yields the familiar result [22]:

WN +Weff = −3

5

GM2

R
−4πG

5
(1+3weff)ρeffMR2. (A29)



14

Since the trace of the potential energy tensor is defined
via forces, the ϕ contribution can be described in terms of
∆GDGP. First let us examine the exterior region. Using
Eq. (A9), we obtain

dϕ

dr
=

4

3β

GδM

r2
x2g(x), (A30)

which using Eq. (15) becomes

dϕ

dr
=

∆GDGP(r/R∗) δM

r2
. (A31)

In the linear regime r ≫ R∗, ∆GDGP then reduces
to (3β)−1G. Note that in the cosmological context,
∆GDGP also has a slow time dependence through β(a)
[see Eq. (10)].

Using that in the interior dϕ/dr ∝ r, we have

Wϕ = −3M

2

∫ R

0

r2dr

R3
r
dϕ

dr
= −3M

10

dϕ

d ln r

∣

∣

∣

r=R
. (A32)

Given that dϕ/dr at r = R is determined by the exterior
solution, we obtain

Wϕ = −3

5

∆GDGPMδM

R
, (A33)

where ∆GDGP = GDGP −G is the effective gravitational
constant for the force modification [Eq. (15)]. Adding all
three contributions, we obtain Eq. (31).

Specifically in the collapse calculation, we evaluate the
virial condition Eq. (A25) in terms of the kinetic and
potential energies per unit mass, written in terms of our
collapse variable y(ln a). Defining

E0 =
3

10
M(H0Ri)

2 (A34)

where Ri is the initial radius of the perturbation, we
obtain

T

E0
=

H2

H2
0

(y′ + a/ai)
2,

WN

E0
= −Ωma−3(δ + 1)(y + a/ai)

2,

Wϕ

E0
= −Ωma−3 ∆GDGP(R/R∗)

G
δ (y + a/ai)

2,

Weff

E0
= −[1 + 3weff(a)]

ρeff(a)

ρcr,0
(y + a/ai)

2. (A35)

We then define the virial radius as the radius during the
collapse at which the virial condition is satisfied. We shall
examine approximate techniques for finding this scale
through energy conservation in §A6. As we shall see,
with conventional definitions of potential energy, the to-
tal energy is not strictly conserved, especially during the
initial stages of collapse.

4. Potential Energy Definition

Let us now consider the potential or binding energy
of the top-hat mass. For the Newtonian contribution,
the potential energy is well defined. By virtue of the
Birkhoff theorem, we can view total mass inside the top-
hat as a Newtonian system in a flat background. We
shall see that neither the potential energy contributed
by the brane bending mode ϕ nor the effective forces of
the background expansion are unambiguous to define as
both depend on the exterior cosmological context. We
therefore follow the convention in the literature in defin-
ing them by analogy to the Newtonian contribution.

The Newtonian calculation of potential energy pro-
ceeds by replacing the exterior of the top-hat with a
flat background, the metric analogue to the Newton iron
sphere theorem (see [40] §4). Removing mass shell by
mass shell from the outside in, we obtain

U =

∫ R

0

Ψtot(m(r); r) 4πρmr2dr (A36)

where Ψtot(m; r) denotes the solution for the total grav-
itational potential for a top-hat with radius r and mass
perturbation m = (r/R)3δM evaluated at r. This is not
to be confused with the total potential at a radius r in-
terior to the whole top-hat.

Even for the matter contribution there arises an ambi-
guity in that the contribution of the background matter
density across the top-hat is defined only up to a con-
stant Ψ0 through Ψeff of Eq. (19). In other words, the
iron sphere theorem applies directly to forces not poten-
tials and constant offsets do not have any impact on the
dynamics. Therefore

Ψtot = ΨN + Ψϕ + Ψeff + Ψ0 . (A37)

This constant Ψ0 does not simply introduce a trivial shift
in U since even though it is constant across the top-hat,
it is not necessarily constant as we strip away mass shells.
In fact, it is conventional to choose this value to corre-
spond to the result from Newtonian mechanics

Ψ0 = −2πGρ̄R2 ≡ −3

2

GM

R
(A38)

such that

ΨN +Ψeff +Ψ0 = −GM

R
+

2πG

3
(1+3weff)ρeffR2 . (A39)

The −GM/R piece then corresponds to the Newtonian
mechanics result for the potential given the total mass
inside the top-hat. Using the Birkhoff theorem, this is a
valid interpretation of the cosmological case as well.

Note that the ρeff piece cannot properly be consid-
ered a binding energy since its contribution cannot be
considered without reference to the cosmological back-
ground. Even for quintessence models where ρeff rep-
resents a real energy density, this contribution is sup-
posed to be smooth within its horizon sized Jeans scale
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regardless of the top-hat collapse and so excising the top-
hat and placing the mass in a flat background does not
strictly make sense.

Nevertheless, under this convention the binding energy
from these three components becomes

UN+Ueff+U0 = −3

5

GM2

R
+

2πG

5
(1+3weff)MR2 . (A40)

By analogy let us compute the potential energy contri-
bution from Ψϕ,

Uϕ =
1

2

∫ R

0

ϕ(m(r); r) 4πρmr2dr. (A41)

Again, ϕ(m; r) denotes the exterior solution of ϕ from
Eq. (A11) for a mass δM → m and radius R → r. Note
that by making this assumption we are implicitly invok-
ing the Birkhoff theorem where it does not in fact strictly
apply. Specifically, as mass shells are stripped away, we
ignore the impact of the underdensity left behind outside
of the body. As we shall see in §A7, this underdensity
actually changes the interior profile. Nonetheless, since
the ambiguity mainly affects the initial stages of collapse
when δM ≪ M , it is useful to simply define Eq. (A41)
as the binding energy associated with ϕ for energy book-
keeping purposes.

Re-expressing in terms of the dimensionless radius y =
r/R (not to be confused with y defined in § III which
we shall not use hereafter), we have m = y3 M , so that
xr = r/r∗(m) = R/R∗ = xR is invariant, while A(m) =
y2A(δM). Therefore,

ϕ(m; r) = y2ϕ(δM ; R), (A42)

where ϕ(δM ; R) is the solution for the full mass eval-
uated at r = R [Eq. (A11) at x = xR]. This is the
same scaling that one obtains for a Newtonian potential,
Ψ(δM ; R) = GδM/R and likewise the potential energy
follows the same scaling

Uϕ =
3

2
Mϕ(δM ; R)

∫ 1

0

y4dy

=
3

10
Mϕ(δM ; R). (A43)

The important difference for Uϕ is that ϕ(δM ; R), the
field profile at R, behaves very differently in the linearized
and Vainshtein limits

Uϕ =







− 1
3β

3
5

GMδM
R , xR ≫ 1,

− 2C0

5β
GMδM

R∗

, xR ≪ 1.
(A44)

Hence, unlike the Newtonian binding energy, |Uϕ| has
a maximum value which is reached asymptotically as
xR = R/R∗ decreases. Thus, while the Newtonian bind-
ing energy can become an arbitrarily large fraction of
the rest mass energy δM , the energy in ϕ is limited to a
fraction of GδM/βR∗ ∼ (GδM/rc)

2/3 due to the brane-
bending mode interactions regardless of the value of R.

5. Potential Energy Usage

Defining a Newtonian based potential energy even
though the collapse does not require a Newtonian inter-
pretation is useful for two interrelated reasons. Firstly it
serves as a bookkeeping device if the total energy is con-
served during the collapse. Secondly, it can be used to
evaluate the virial condition if it can be simply related to
the trace of the potential energy tensor W . We examine
to what extent these two expectations are satisfied given
the field ϕ and the effect of the background expansion.

Let us define the total energy of the perturbation dur-
ing collapse as

E = T + U. (A45)

Taking the time derivative of Eq. (A45) and using the
equation of motion of R(t) [Eq. (18)] rewritten using the
top-hat profile as:

R̈ = −GDGPδM

R2
− 4πG

3
[(1 + 3weff)ρeff + ρ]R, (A46)

we obtain:

dE

dt
=

3

5
MṘR̈ +

∂U

∂R
Ṙ +

∂U

∂t
(A47)

=
∂U

∂t
,

Here, the partial derivative ∂U/∂t receives contributions
from evolving quantities in the total potential energy, the
sum of Eq. (A40) and (A43). Since M is conserved, there
is no violation of energy conservation for a pure matter
system with ρeff = 0 and ϕ = 0. This is a consequence
of adding the Ψ0 offset term to reproduce Newtonian
mechanics in the matter terms including the background.

On the other hand both the ρeff and ϕ contributions
have explicit time evolution across a Hubble time. Note
that violation of energy conservation due to evolution of
ρeff also applies to dark energy models where weff 6= −1.
For the ϕ term Eq. (A43), β evolves with the expansion,
and as long as δ is not much greater than 1, δM also
evolves during collapse. More generally these effects oc-
cur whenever the modification to the background (due to
modified gravity or the presence of dark energy) does not
match that of the perturbations. We return to the impact
of energy non-conservation in § A6. Non-conservation of
the Newtonian total energy defined in Eq. (A45) does not
mean a violation in covariant conservation of energy and
momentum.

In order to use the potential energy to assist the evalua-
tion of the virial theorem, we must relate U to the trace of
the potential energy tensor W . It is well known that for a
potential satisfying Ψ(r) ∝ rα and for which the interior
solution is Ψint(r < R) = Ψext(m(r); r), Wi = −α Ui.
Hence, for potentials satisfying this condition, the po-
tential energy determined by the potential itself is of the
same order as the trace of the potential energy tensor
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defined by the forces. This holds for the Newtonian con-
tribution, where we have UN = WN , and the effective
background contribution, which satisfies Ueff = −Weff/2.
For the brane-bending mode, the potential is no longer
a pure power law and the distinction between U and W
leads to interesting consequences in the Vainshtein limit.

Note that in this xR ≪ 1 limit, the potential energy Uϕ

is dominated by the constant term in Eq. (A13), while
the contribution from the x1/2 part of the profile which
determines forces is much smaller. Correspondingly, the
assumption that the trace of the potential energy tensor
W is of order the potential energy U is not valid for the
ϕ contribution, as the change in the potential across the
body is much smaller than the potential depth itself. The
relationship between Wϕ and Uϕ follows from Eq. (A32)
and (A43):

Wϕ = −d lnϕ

d ln r

∣

∣

∣

r=R
Uϕ = −d lnUϕ

d lnR
Uϕ. (A48)

In the R ≫ R∗ limit ϕ ∝ r−1 and Wϕ = Uϕ as usual
but in the R ≪ R∗ limit, ϕ ≈ const. and the trace
of the potential tensor is highly suppressed compared to
the potential energy. Fig. 12 shows Uϕ and Wϕ as a
function of the overdensity δ = δρ/ρ of the perturbation.
Note that if we were to interpret the Vainshtein effect
as simply a modification of G we would infer the wrong
energy condition at virialization. We discuss this issue in
the next section.

6. Misestimating Virial Overdensity

Most commonly, the virial condition Eq. (29) is evalu-
ated using energy conservation. At virialization,

T (Rvir) = −1

2
W (Rvir) (A49)

and the total energy E = T (Rvir)+ U(Rvir) = U(Rvir)−
W (Rvir)/2. Since at turn-around (R = Rta) the kinetic
energy vanishes, we have E = U(Rta). Assuming energy
conservation we obtain

U(Rta) − U(Rvir) +
1

2
W (Rvir) = 0. (A50)

By further assuming a relationship between the potential
energy U and the trace of the potential tensor W we can
solve for Rvir/Rta. There are therefore two ways by which
this association can go wrong: if E is not conserved and
if an incorrect relation between U and W is employed.

Let us begin by examining the first issue. Energy is
not strictly conserved in any model where either weff 6=
−1 (including quintessence), modifications to gravity are
time variable, or force modifications are only generated
by the perturbed mass δM .

Evaluating Eq. (A45) during collapse, we found that
in the effective dark energy model QCDM (which has
the same H(z) as sDGP), energy conservation is vio-
lated by ∼ 3% from turn-around to collapse. While the

FIG. 12: Scaled brane-bending mode binding energy 3β ×
Uϕ in units of the Newtonian binding energy UN =
−3GMδM/5R (black solid) as a function of the overdensity δ
for a spherical top-hat mass at z = 0 in the sDGP cosmology.
The blue dashed line shows the trace of the potential energy
tensor (3β)×Wϕ used in the virial theorem, Eq. (A32), again
with respect to the Newtonian value WN = UN .

violation of energy conservation in dark energy models
thus seems to be minor, it does influence the virial over-
density due to the sensitivity of ∆vir to Rvir and avir.
Fig. 13 shows ∆vir as function of a constant dark energy
equation of state weff and Ωeff = 0.741, determined by
evaluating the virial condition during collapse (our ap-
proach) and using energy conservation (e.g., [22]). While
both approaches agree for weff = −1 as expected, there
are clear differences as soon as weff 6= −1. Note that
these differences are of the same order as the difference
∆vir(weff) − ∆vir(weff = −1).

Our approach does not rely on exact energy conser-
vation and one might thus expect the ∆vir obtained in
this way would lead to a better match to observables.
Since quantities such as the mass function are typically
simply fit to simulations with a given definition of over-
density, this is in part an issue of semantics. However
use of a more physically motivated scaling might lead
to a more universal form for the mass function or one
that scales more simply with parameters of the theory.
It would however be necessary to compare with N-body
simulations of weff 6= −1 dark energy models and that
is beyond the scope of this work. Here we simply note
that the dependence on weff of ∆vir determined using our
approach is smaller than that of the usual definition and
so it would predict a more universal scaling with a fixed
overdensity than the standard approach.



17

FIG. 13: Misestimation of the virial overdensity ∆vir in
quintessence dark energy models. ∆vir as defined in § IIIC
for collapse at a0 = 1, as a function of the dark energy equa-
tion of state parameter weff =const. and Ωeff = 0.741 i.e.
for standard gravitational forces (top panel). The solid line
shows ∆vir determined by evaluating the virial condition dur-
ing collapse, the approach adopted here, while the dashed line
shows the usual calculation using standard energy conserva-
tion as described in § A6. Both calculations agree for w = −1,
i.e. ρeff =const. The lower panel shows the relative deviation
between the two, (∆std

vir − ∆vir)/∆vir.

The deviations from E = const. are much larger in
the DGP modified force case, where evolving forces and
δM lead to stronger evolution of E. Here, differences in
the total energy between turn-around and collapse are
10− 15%. Thus, the choice of procedure for determining
∆vir becomes even more important. Again, we found
that our approach (greatly) reduces the dependence of
∆vir on the evolution of the modified forces.

Finally, we consider the effect of assuming an incorrect
relation between U and W in Eq. (A50). For example,
it is tempting to just set Uϕ = Wϕ = ∆GDGP/G × WN ,
i.e., ignoring the R-independent term in Uϕ. However,
since ∆GDGP → 0 in the late stages of collapse (δ → ∞),
Uϕ would erroneously be set to 0 in this approximation.
For β of order unity, this leads to apparent violations
of energy conservation at the level of 30%. When using
energy conservation in the presence of the ϕ field, it is
thus crucial to take into account the differences between
Uϕ and Wϕ.

FIG. 14: Field gradient dϕ/dr for a compensated top-hat
profile (solid) in units of 2/(3β)GδM/R2 as a function of y =
r/R. ye = Re/R is set to 100 (corresponding to δ = 106),
and y∗ = R∗/R = 67, corresponding to ǫ = 0.3 valid for
the sDGP model. The dashed line shows dϕ/dr for the same
top-hat mass but with uncompensated profile. Near R, force
modifications from ϕ are not affected by compensation.

7. Compensated Top-hat Profile

Finally we study one example of a density profile be-
yond the pure top-hat, the compensated top-hat profile.
In the cosmological context, a collapsing top-hat pertur-
bation sweeps out “empty space” and in fact has the
following density profile:

ρ(r) − ρ =











ρδ, r ≤ R,

−ρ, R < r ≤ Re,

0, r > Re,

(A51)

where Re = Ria/ai is the physical radius today corre-
sponding to the radius of the perturbation at an early
time ai when δ ≪ 1. We continue to call the total
mass and mass perturbation enclosed at R as M and
δM ≡ m(R) respectively.

In terms of the scaled radial coordinate y ≡ r/R, the
full description for the enclosed mass perturbation be-
comes

m(r) =











δMy3, y ≤ 1,

M [1 − (y/ye)
3], 1 < y ≤ ye,

0, y > ye.

(A52)

Importantly, forces at a given radius only depend on the
enclosed mass m(r) through Eq. (A5). Given that for
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r < R the enclosed mass of the compensated and un-
compensated top-hat are the same, compensation has
no impact on the interior dynamics of collapse. Like-
wise, from the definition of the potential energy tensor
Eq. (A26), we see then that Wϕ is unchanged from that
of the pure top-hat profile and hence the virial condition
is unmodified.

Naively, one might assume that as long as δ ≫ 1, the
compensation has little effect on the binding energy or
gravitational potential Ψ in the interior as well but we
shall see that this is not necessarily so for the brane-
bending contribution due to the Vainshtein suppression.

In the exterior (y > 1) forces from ϕ are modified by
the compensation as

dϕ

dy
= R

dϕ

dr
(A53)

=

(

2

3β

GδM

R

)

2y

y3
∗





√

(

y∗
y

)3
y3

e − y3

y3
e − 1

+ 1 − 1



 .

In the limit ye ≫ y ≥ 1, the forces are the same as in the
uncompensated profile (see Fig. 14). Since y3

e = 1 + δ,
forces are unchanged near the body, y ∼ 1, as long as δ ≫
1. Even for δ < 1, this modification does not introduce
any physical effect on the collapse since there is no mass
in the exterior region 1 < y < ye that could be moved by
the modified forces. Hence an initial top-hat profile will
remain a top-hat during collapse.

Now let us look at the effect of compensation near the
Vainshtein scale of the mass, y∗ ≡ R∗/R. Note that

y3
∗

y3
e

= ǫ
δ

1 + δ
(A54)

where ǫ−1 is the density threshold beyond which the
Vainshtein mechanism operates as defined in Eq. (27).
Unless this density threshold also satisfies ǫ−1 ≫ 1, com-
pensation effects will change how the profile saturates,
since y∗ will be comparable to ye. Correspondingly in
Eq. (A53), both δ ≫ 1 and ǫ ≪ 1 are necessary for
dϕ/dy to recover the uncompensated result at the Vain-
shtein scale y∗. Given that the top-hat ϕ profile within
R∗ is controlled by its value at R∗, we expect the ϕ pro-
file itself to be modified near the body by the density
compensation unless ǫ ≪ 1.

More specifically, let us consider the linearized (y∗ ≪
y) and Vainshtein (y∗ ≫ y) limits as before. First note
that even the Newtonian force dΨN/dr for the compen-
sated top-hat at y > 1 is modified as

R
dΨN

dr
=

G m(r)

R
y−2 =

GδM

R

y3
e − y3

y3
e − 1

y−2. (A55)

In the linearized limit, Eq. (A53) reduces to

lim
y≫y∗

dϕ

dr
=

2

3β

dΨN

dr
(A56)

FIG. 15: The exterior ϕ profile in units of 2/(3β)GδM/R
as function of the scaled radius y for a compensated top-hat
profile (solid). ye = 100 and y∗ = 67 as in Fig. 14. The field
goes to 0 at y = ye (dotted vertical line). The dashed line
shows the profile for an uncompensated top-hat with the same
mass and radius. Note that the ϕ field for the two profiles
differs at all radii, reflecting the fact that ϕ(r) is not simply
determined by the enclosed mass at r.

as expected. In the Vainshtein limit of y∗ ≫ y(> 1), and
in which case y ≪ ye as well, the force contributions take
the form

lim
y≪y∗

dϕ

dy
=

(

2

3β

GδM

R

)

2√
y
y
−3/2
∗

(

y3
e − y3

y3
e − 1

)1/2

.

(A57)
We thus recover the leading r−1/2 behavior of the force
in this limit. Fig. 14 shows dϕ/dy as function of y for
different values of y∗ = R∗/R. Note that unlike the New-
tonian case, the force given by dϕ/dy differs from that
of an equivalent top-hat with radius r and enclosed mass
fluctuation m(r) for any r > R. This behavior cannot be
described by a simple GDGP(δ) parametrization.

Next as with the pure top-hat, we can solve for the
whole field profile given the boundary condition ϕ(Re) =
0 by integrating

ϕ(r > R) = −
∫ ye

r/R

dϕ

dy
dy. (A58)

We then obtain

ϕ(y) = −
(

2

3β

GδM

R

)

y2
e

y3
∗

[

y2

y2
e

− 1 + F (1, ǫ) − F (
y

ye
, ǫ)

]

,

where

F (x, ǫ) ≡ 4
√

ǫx 2F1[−1/2, 1/6; 7/6; x3(1 − ǫ−1)]. (A59)
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Note that this is a slightly different hypergeometric func-
tion than that in the pure top-hat field solution. Fig. 15
shows ϕ(y) vs. y for a fixed overdensity δ = 106 for two
different values of y∗ (or, equivalently, ǫ). Again, we ob-
tain the expected scaling in the limiting cases. For the
linear limit y ≫ y∗, we have

lim
y≫y∗

ϕ(y) =

(

2

3β

GδM

R

)[

−y2

2δ
− δ + 1

yδ
+

3

2

(δ + 1)2/3

δ

]

=
2

3β
ΨN , (A60)

proportional to the Newtonian potential for a com-
pensated top-hat with the same boundary condition,
ΨN (Re) = 0. As expected, for δ ≫ 1 the profile matches
the uncompensated case until y approaches ye.

In the Vainshtein limit y∗ ≈ ǫ1/3ye ≫ 1 and the profile
becomes

lim
y≪y∗

ϕ(y)= −
(

4

3β

GδM

R∗

)

[

Cǫ − 2
√

y/y∗

]

(A61)

where

Cǫ =
F (1, ǫ) − 1

2ǫ2/3
. (A62)

In the limit ǫ → 0, Cǫ = C0, and the profile returns to the
uncompensated form of Eq. (A20). In Fig. 16 we show
Cǫ/C0 the reduction in the surface potential ϕ(R) due to
the compensation in the Vainshtein limit.

One can also define an alternate definition of the bind-
ing energy of the perturbation δM . Suppose that we
again define the binding energy Uϕ as in Eq. (A41) by
removing shell by shell of the mass to Re. However, in
this case we properly account for the impact of the exte-
rior. As each shell is removed to Re, it fills in the mass
deficit so that Re decreases in such a way as to keep
ye = Re/R constant.

Thus, the only part of Eq. (A59) which scales nontriv-
ially is the prefactor δM/R ∝ R2 as in the case of the
pure top-hat. Eq. (A43) strictly holds for the compen-
sated top-hat

Ui =
3

10
MΨi(δM, R) (A63)

for the Newtonian and ϕ contributions. In particular, in
the Vainshtein regime, the modification in Uϕ from the
pure top-hat is given by the constant piece in the profile
which scales with ǫ as in Fig. 16.

In fact, this derivation unlike that for the pure top-
hat is fully self-consistent in that the form of the profile,
including the background contribution, is self-similar as

the shells are removed. Furthermore the end result is a
compensated top-hat of R → 0, i.e. an unperturbed uni-
verse with no source to ϕ. In this view the binding energy
associated with δM is the energy required to eliminate
the mass perturbation rather than the mass.

Unfortunately, this definition still does not fully resolve
the ambiguities associated with the potential energy def-
inition. We still need to account for the potential energy

FIG. 16: Reduction in the surface potential due to compensa-
tion in the Vainshtein limit, Cǫ/C0, as a function of ǫ = y3

∗
/δ.

In the limit ǫ ≪ 1, y∗ ≪ ye and the compensation has lit-
tle effect on the ϕ profile. This quantity also controls the
reduction in binding energy.

due to the background density. In particular, in this def-
inition the Newtonian binding energy also only accounts
for the perturbation and hence using it in the definition
of total energy would not obey strict energy conservation
during the collapse, especially for δ < 1. We have seen
that in the literature the definition of potential energy
is mainly used in conjunction with energy conservation
to simplify the calculation of the virial radius. In this
context, the original definition of binding energy as that
of a pure top-hat with no contribution from the exterior
is more useful. In this case it is important to keep in
mind however that modified forces as well as evolving
dark energy density generally imply a violation of energy
conservation (§ A5).
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