
MNRAS 000, 1–20 (2018) Preprint 9 May 2018 Compiled using MNRAS LATEX style file v3.0

Star-galaxy classification in the Dark Energy Survey Y1
dataset

I. Sevilla-Noarbe1∗, B. Hoyle2,3, M.J. Marchã4, M.T. Soumagnac5,K. Bechtol6,
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ABSTRACT
We perform a comparison of different approaches to star-galaxy classification using the
broad-band photometric data from Year 1 of the Dark Energy Survey. This is done by
performing a wide range of tests with and without external ‘truth’ information, which
can be ported to other similar datasets. We make a broad evaluation of the performance
of the classifiers in two science cases with DES data that are most affected by this
systematic effect: large-scale structure and Milky Way studies. In general, even though
the default morphological classifiers used for DES Y1 cosmology studies are sufficient
to maintain a low level of systematic contamination from stellar mis-classification,
contamination can be reduced to the O(1%) level by using multi-epoch and infrared
information from external datasets. For Milky Way studies the stellar sample can be
augmented by ∼ 20% for a given flux limit. Reference catalogs used in this work will
be made available upon publication. .
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2 I. Sevilla-Noarbe et al.

1 INTRODUCTION

Accurate classification of astrophysical sources is essential
for interpreting photometric surveys. Specifically, separat-
ing foreground stars from background galaxies is important
for many astronomical research topics, from Galactic sci-
ence to cosmology. Conventional morphological classifica-
tion techniques separate point sources (mostly stars) from
resolved sources (galaxies) using selections in magnitude-
radius space or similar variables (MacGillivray et al. 1976;
Kron 1980; Heydon-Dumbleton et al. 1989; Yee 1991). For
bright sources, morphology has proven to be a sufficient met-
ric for classification. In this regime, for weak lensing appli-
cations, a very pure, but also abundant, star sample is vital
for deriving the correct point spread function in the images
which is used to later infer cosmic shear (Soumagnac et al.
2015; Jarvis et al. 2016; Zuntz et al. 2017). At fainter mag-
nitudes unresolved galaxies will begin to contaminate cat-
alogs of point-like sources and noisy measurements of stars
will contaminate the galaxy sample. Blended sources become
an issue as well, because distant and/or faint sources start
to merge into single detected objects with spurious shapes.
Mis-classification of stars and galaxies at faint magnitudes
can introduce spurious correlations in galaxy surveys (Ross
et al. 2011) and will hamper the study of stellar distributions
(Drlica-Wagner et al. 2015).

The advent of CCD detectors provided larger, more re-
liable data sets which became an obvious target for machine
learning classification algorithms (e.g., Odewahn et al. 1992;
Bertin & Arnouts 1996; Sevilla-Noarbe & Etayo-Sotos 2015;
Machado et al. 2016; Kim & Brunner 2017). In addition,
many large, multi-band imaging surveys have incorporated
color information into their classifiers (see Ball et al. 2006 for
SDSS, Hildebrandt et al. 2012 for CFHTLS or Saglia et al.
2012 for Pan-STARRS). Adopting a Bayesian approach to
incorporate fits to stellar and galaxy templates has been
shown to be a promising avenue (Fadely et al. 2012), as well
as the use of infrared data to complement the optical band
observations (Ma lek et al. 2013; Kovács & Szapudi 2015;
Banerji et al. 2015).

In this paper we test different strategies for classifying
objects as point-like or extended sources in the Dark Energy
Survey (DES) Year 1 data (Y1). We subsequently analyze
the impact in two broad science cases, and possible devel-
opments to improve object classification in future analyses
of this data. Throughout this paper, ‘extended’ will be used
as a synonym for ‘galaxy’ whereas ‘point-like’ includes both
stars and quasi-stellar objects (QSOs) on first approxima-
tion and we will collectively call them ‘stars’ in this work.
For the case studies considered here and the general cata-
log, the contamination of QSOs in the large-scale stellar and
galactic catalogs is not deemed important. However, a good
star-QSO separation is needed for quasar science, as studied
in detail in Tie et al. (2017) for DES data.

After a description of the dataset in Section 2 and the
classifiers we are considering here in Section 3, we compare
the classifiers in calibration fields (Section 4) and then an-
alyze the response in the complete Y1 dataset for a few se-
lected ones (Section 5). Then we study the impact on large-
scale structure and Milky Way studies (Section 6). Finally,
Section 7 presents the conclusions and discusses possible ad-
ditional developments.

2 DARK ENERGY SURVEY DATASETS

The DES consists of a 5000 square-degree ”wide” survey us-
ing the grizY photometric bands to AB 10σ magnitude lim-
its of (24.6, 24.4, 23.7, 22.7, 21.5) respectively for 2 arc-
second apertures, together with a ∼27 square degree super-
novae survey observed in the griz bands with an approxi-
mately weekly cadence. In February 2018, the project com-
pleted the original five planned observing seasons (Years 1
through 5, Y1-Y5). Additional science-quality data was col-
lected during an earlier Science Verification (SV) season.
The core goal of DES is a multi-probe study of dark en-
ergy at different cosmological epochs using the same DECam
instrument (Flaugher et al. 2015) and DES Data Manage-
ment (DESDM) pipeline (Morganson et al. 2018), as show-
cased with its first results in DES Collaboration et al. (2017).
However, the richness of this dataset allows astronomers and
cosmologists to go beyond this initial objective (DES Col-
laboration et al. 2016).

For this study, we use the subset of highest quality data
from DES SV1 and Y1 (Drlica-Wagner et al. 2018) compris-
ing the ”Gold” catalog. We note the following features that
are relevant for the present study:

• The object catalogs are obtained applying SExtractor

(Bertin & Arnouts 1996) to coadded images with typically
2 to 4 overlapping exposures in each band in the case of Y1
or ∼ 10 for SV data, with object detection performed on a
combined riz image.
• SExtractor magnitudes have been calibrated through

a global calibration module (Tucker et al. 2007) and subse-
quently adjusted through a fit to the stellar locus (High et al.
2009) anchored to the i band2. This procedure also corrects
for Galactic extinction. In general, MAG_AUTO is used for pho-
tometry (for binning purposes and as inputs for the template
based method described below), as it behaves more robustly
for these coadded catalogs. MAG_MODEL, MAG_DETMODEL3 and
MAG_PSF are used as inputs for the machine learning methods
as well.
• In addition, a multi-object, multi-epoch fitting pipeline

(MOF) has been run on the single-epoch image counterparts
for each coadd catalog detection to obtain more precise pho-
tometric measurements for the objects, simultaneously fit-
ting the individual images and modeling light from nearby
neighbors for each object (more details in Drlica-Wagner
et al. 2018).
• All objects are required to be in areas for which there

is at least one exposure in each of the griz bands.

We define two distinct regions in which we will perform
our tests:

(i) A calibration field: defined by those areas that over-
lap external datasets that we can use to train, validate
and test our methods. These are the supernova (SN) fields

1 https://des.ncsa.illinois.edu/releases/sva1
2 This calibration approach was eventually superseded in Y3 data
products with the Forward Global Photometric Calibration ap-
proach described in Burke et al. (2018)
3 In this case the exponential model used in SExtractor is fitted

on the detection image and scaled in the measurement images of

each band.
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Star-galaxy classification in DESY1 data 3

from the DES SN survey, which overlap specific spectro-
scopic surveys and miscellaneous Hubble Space Telescope
(HST) datasets; and the area of the survey overlapping the
Sloan Digital Sky Survey (SDSS; York et al. 2000) Stripe
82 region (Frieman et al. 2008). In addition, the COSMOS
field4 has been imaged with DECam, providing a very use-
ful dataset given the richness of multi-band imaging and
spectroscopy available. Table 1 summarizes the numbers of
objects matched to various external datasets (details in Sec-
tion 4.3). Some of these fields have a large number of DES
exposures, due to their application for SN searches, so spe-
cial coadds were made from ∼ 4 exposures in each band in
order to resemble the Y1 depth. The selection of these expo-
sures was made so that their coaddition would provide sim-
ilar characteristics in terms of sky brightness and seeing as
the wide survey coadds (Drlica-Wagner et al. 2018; Neilsen
et al. 2016). This procedure is not needed in forthcoming
releases as the wide survey extends to cover the supernova
regions.

(ii) An application field: the remaining area of the DES
footprint for which suitable external datasets for training are
not presently available. This includes the so-called ‘SPT’
region due to the overlap with the South Pole Telescope5

(Ruhl et al. 2004) observations, in which we can make some
quality assessment as well, though limited by the lack of
external references.

3 DESCRIPTION OF THE OBJECT
CLASSIFIERS

Table 2 summarizes the methods explored in this paper to
perform object classification. These include a variety of al-
gorithms using machine learning methods (training on mor-
phological and/or color information), pixel-level flux mea-
surements and template-fitting. For the sake of clarity and
conciseness, not all algorithms are subjected to every test
in this paper, but usually a selection is made in each case.
Additional details and references are given below:

• CLASS STAR (Bertin & Arnouts 1996) is the stan-
dard SExtractor star-galaxy classifier, providing a neural
network real number output (a ‘stellarity’ index from 0 to
1) based on the training on a large simulation of galaxy and
star images on CCDs. In particular, it uses a backpropaga-
tion model (Werbos 1982) for learning, and bases its train-
ing on eight isophotal areas above the background, plus the
value of the intensity at the peak pixel in the object and the
value of the FWHM for the image. The simulations include
a wide range of PSF profiles and sizes, though they are op-
timized to work best on intermediate magnitude ranges (in
the DES magnitude scale) of V ∼ 18− 22 due to the types of
galaxies simulated and relative star-galaxy mixture.
• SPREAD MODEL is a linear discriminant-based

algorithm available with the SExtractor package. The
SPREAD_MODEL estimator was originally developed as a star-
galaxy classifier for the DESDM pipeline, and has also been
used in other surveys (e.g., Desai et al. 2012; Bouy et al.

4 http://cosmos.astro.caltech.edu/
5 https://pole.uchicago.edu/

2013). SPREAD_MODEL indicates which of the best fitting local
PSF model ®φ (representing a point source) or a slightly more

extended model ®G (representing a galaxy) better matches

the image data. ®G is obtained by convolving the local PSF
model with a circular exponential model with scale length =
1/16 FWHM (Full-Width at Half-Maximum). SPREAD_MODEL
is normalized to allow comparing sources with different PSFs
throughout the field:

SPREAD MODEL =
®GTW ®p
®φTW ®p

−
®GTW ®φ
®φTW ®φ

, (1)

where ®p is the image vector centered on the source6. W is
a weight matrix constant along the diagonal except for bad
pixels where the weight is 0. By construction, SPREAD_MODEL
is close to zero for point sources, positive for extended
sources (galaxies), and negative for detections smaller than
the PSF, such as cosmic ray hits. The RMS error on
SPREAD_MODEL is estimated by propagating the uncertainties
on individual pixel values:

SPREADERR MODEL =
1

( ®φTW ®p)2
(
®GTV ®G ( ®φTW ®p)2

+ ®φTV ®φ ( ®GTW ®p)2

−2 ®GTV ®φ ( ®GTW ®p ®φTW ®p)
)1/2

(2)

where V is the noise covariance matrix, which is assumed to
be diagonal.

An example of a classifier derived from SPREAD_MODEL is
the default classification scheme (MODEST_CLASS) used in the
Y1 Gold catalog, which includes the following criteria:

galaxies ⇐⇒
SPREAD_MODEL_I+

(5/3) × SPREADERR_MODEL_I > 0.005
AND NOT

(|WAVG_SPREAD_MODEL_I| < 0.002
AND

MAG_AUTO_I < 21.5)

(3)

stars ⇐⇒
|SPREAD_MODEL_I+
(5/3) × SPREADERR_MODEL_I| < 0.002

(4)

where WAVG_SPREAD_MODEL has been computed from a
weighted average of the SPREAD_MODEL values of single-epoch
shapes corresponding to that coadd object. These provide a
better separation (DES Collaboration 2018) with respect to
the standard SPREAD_MODEL on coadd images, albeit with
a limited depth reach, as not all coadd objects have sin-
gle epoch detections from which a weighted averaged can
be computed (a faint object could be detected only in the
coadded image and not in the individual epochs contribut-
ing to the image). The weights come from the weight map
of the Data Management processing outputs and the band

6 This definition of SPREAD_MODEL differs from the one given in
previous papers (Desai et al. 2012; Bouy et al. 2013), which was

incorrect. In practice both estimators give very similar results.

MNRAS 000, 1–20 (2018)



4 I. Sevilla-Noarbe et al.

Table 1. External datasets used in this work. More details are provided in Appendix B.

Catalog Type Usage in this work Nb. matched objects Reference

ACS-COSMOS Space optical imaging Truth table 116017 Leauthaud et al. (2007)

Hubble-SC Space optical imaging Truth table 12927 Whitmore et al. (2016)

SDSS-stripe 82 Ground optical spectroscopy Truth table 18985/53345 Albareti et al. (2017)
VVDS Ground optical spectroscopy Truth table 4442 Le Fèvre et al. (2013)

WISE Space NIR imaging Complementary data 18985 Wright et al. (2010)
2MASS Ground NIR imaging Complementary data 18985 Skrutskie et al. (2006)

VHS Ground NIR imaging Complementary data 53345 McMahon et al. (2013)

Table 2. Summary of classification methods.

Name Type of data used Description

CLASS STAR Morphological Neural Network on isophotal measurements
SPREAD MODEL Morphological Normalized Linear Discriminant

CM T Morphological Multi epoch fitting to shape

MCAL RATIO Morphological Metacalibration ratio of object size over PSF size
ADA PROB Most discriminating features Boosted Decision Trees

GALSIFT PROB All catalog columns (PCA) Random Forests
SVM Morphological Support Vector Machine on a limited column set

CONCENTRATION Morphological Light concentration

W1-J, J-K Fluxes Infrared color discrimination
HB PROB Fluxes Template fitting of spectra

chosen is the i band where the images have a higher sig-
nal to noise, and have also demonstrated best performance
in detailed simulations. Objects which do not fall into the
categories expressed by Equations 3 and 4 are grouped into
either a ‘fringe’ category between both or an ‘artifact’ cate-
gory (approximately 5% of the catalog considered here).
• CM T is an intrinsic size estimator for the object from

the image fitting provided by the MOF pipeline. This fitting
tool estimates the shapes and fluxes of objects detected in
the coadd catalogs, using a mixture of Gaussians7,8 to sim-
ulate the PSF light profile and then convolve them with as-
sumed bulge and disk models (fitted independently for each
object, finding the best linear combination) likewise approx-
imated using Gaussian mixtures (Hogg & Lang 2013). This
is done by fitting across several images of the same object
in multiple epochs and bands and then subtracting the flux
of neighbors accurately. Concretely, CM_T is really a ‘size
squared’ defined as:

CM T = 〈x2〉 + 〈y2〉 (5)

where x and y denote the distance from the object’s center.
The PSF is convolved with the fitted model to obtain these
pre-PSF values. An associated uncertainty is computed as
well, and our best performing classifier, as tested9 in the
COSMOS field, is based on the quantity CM T+2×CM T ERR.
Typical values are in the range between -0.5 and 0.5.
• A CONCENTRATION parameter similar to what

was used as a star-galaxy classifier for SDSS (Abazajian
et al. 2004). In the case of DES, this translates to the use of
the difference between the MOF PSF magnitude and a bulge

7 https://github.com/esheldon/ngmix
8 https://github.com/esheldon/ngmixer
9 Technically, a different, validation set would be required to tune

this classifier in terms of the quantity multiplying CM_T_ERR, to
avoid bias a towards a specific value, though in practice the dif-

ferences are small between different choices.

+ disk, or composite, model magnitude computed by the
MOF pipeline (PSF MAG I − CM MAG I).
• MCAL RATIO is derived from the measurements of

the object size and PSF model size obtained using the meta-
calibration technique, developed for shear measurement in
weak lensing studies (Sheldon & Huff 2017). This uses the
same ngmix code as MOF above. This measurement is much
noisier as the metacalibration technique adds extra noise as
part of the correlated noise correction. This is part of the
procedure to correct for selection effects in shear inference,
as detailed in Sheldon & Huff (2017).

MCAL_RATIO =
Tmcal

TPSF
(6)

where Tmcal and TPSF are sizes of the object or PSF respec-
tively as defined in 5. Values are not constrained, but typical
ranges explored for star-galaxy separation are between 0 and
1.

• ADA PROB is the name given to a machine learn-
ing framework which combines feature generation, and fea-
ture pre-selection with machine learning algorithms (includ-
ing AdaBoost) drawn from the scikit-learn package (Pe-
dregosa et al. 2011), and a probability calibration. The de-
tails of the framework are described in detail in Appendix
A. Two variants have been used of this approach, using
either SExtractor quantities ADA_PROB or MOF quantities
ADA_PROB_MOF.

• GALSIFT PROB is the probabilistic estimate pro-
vided by Galsift (‘Multi class’ in Soumagnac et al. (2015)).
It is a multi-parameter classifier that consists of three steps:

– Step 1 - A principal component analysis (PCA) to
outline the correlations between the object parameters
and extract the most relevant information.

– Step 2 - Calculation of the Fisher discriminant
(Fisher 1936) for each of the new parameters to quantify

MNRAS 000, 1–20 (2018)
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their aptitude to separate between the classes.

Fi =
(XG,i − XS,i)2

σ2
G,i
+ σ2

S,i

(7)

G and S corresponding to the galaxy and star classes re-
spectively.

– Step 3 - Selection of the parameters with the highest
Fisher discriminant (hence the highest ‘separation power’
of the classes) and using them as input to a machine learn-
ing classification algorithm. Whereas in Soumagnac et al.
(2015) the authors used ANNz (Collister & Lahav 2004), in
this application we have replaced it by a Random For-
est classification algorithm implemented as part of the
scikit-learn package for Python (Pedregosa et al. 2011).

The output is a probability of the object being a star or a
galaxy. In this case, we have used a classifier based only on
MOF quantities, GALSIFT_PROB_MOF.
• W1-J, J-K infrared bands: In the Stripe 82 region,

we will compare with the information provided by the Vista
Hemisphere Survey DR3 (McMahon et al. 2013) as pro-
posed in Banerji et al. (2015) up to the available depth.
We will also estimate the classification power of a cut in
the infrared bands W1-J from WISE (Wright et al. 2010),
2MASS (Skrutskie et al. 2006), as described in Kovács &
Szapudi (2015).
• SVM, support vector machine, is a supervised ma-

chine learning algorithm that constructs a separating hy-
perplane in any arbitrary n-dimensional space that maxi-
mizes the margins of objects to the hyperplane. Following
Wei et al. (in prep), the SVM is a single-band, purely mor-
phological and magnitude based classifier. The only input
features used by the SVM are MAG_AUTO_I, FLUX_RADIUS_I,
and SPREAD_MODEL_I. To make the SVM robust across var-
ious data sets with intrinsic variations in observation con-
ditions, the algorithm performs linear transformations on
the three input features to remove the means and make the
standard deviations across all objects to be one. The SVM

uses a Gaussian radial basis function (rbf) kernel, where the
hyperparameters, γ = 0.01 and C = 46.4, are selected while
training the SVM through an exhaustive cross-validated grid
search. The SVM outputs distances of objects to the hyper-
plane, where a high positive (negative) value corresponds to
a high confidence star (galaxy) classification.

Additionally, we implemented a Hierarchical Bayesian
method (HB_PROB) developed and explored by Fadely et al.
(2012); Kim et al. (2015) with CFHTLS data. The lack of
u-band in our case severely impacted the performance of this
method, so it was not pursued further in our analysis.

Table 3 shows the specific selection methods used with
respect to a varying threshold t for each of the algorithms
used in this work.

4 PERFORMANCE ON CALIBRATION
FIELDS

In this section, we will look first at the metrics used to
compare classifiers using the calibration fields, describe the
datasets (including training and validation) and finally an-
alyze the results.

4.1 Receiver Operating Characteristic (ROC)
curves

We compare the performance of the different classifica-
tion techniques using the calibration fields, by calculat-
ing Receiver Operating Characteristic (ROC; Fawcett 2006;
Bradley 1997) curves which compare the True Positive Rate
(TPR) of galaxy or star detection, given a specific threshold
for the classifier, versus the False Positive Rate (FPR), as
defined by:

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + T N
(9)

where TP are correctly identified galaxies, given a cut for
a specific classifier; FN are incorrectly classified galaxies as
stars; FP are incorrectly classified stars as galaxies and T N
correctly identified stars (in the assumption of using ‘truth’
for galaxy type). See Table 4 for a reference on these con-
cepts. Therefore, the ROC curve is confined by construction
to an area spanning from 0 to 1 in FPR and TPR. As we
vary the threshold t for classification for a given classifier
(Table 3), a curve will be drawn across the area from (0,0)
to (1,1). A completely random ‘classifier’ would show as a
diagonal line.

In particular, the AUC (area under the ROC curve)
has been classically used as a threshold-independent metric
to compare the performance of classifiers, as well as being
relatively insensitive to the specific positive to negative com-
position (as long as sufficient statistics are available). The
closer the AUC gets to unity, the better the discriminating
power of the classifier associated with that particular curve.
Again, a random classifier would show an AUC value of 0.5.

There are, however, some caveats to be aware of, namely
the possibility of misleading results when ROC curves cross
each other (Hand 2009) and that misclassification costs can
be different according to the scientific case, and this is not
reflected in ROC curves. We address this by extending the
range of metrics used for different classifiers, in order to have
a broader view of the performance for our particular needs.

4.2 Purity and completeness

In astronomy, we are interested in evaluating the perfor-
mance of classifiers in terms of their impact on measurable
on parameters of interest. It is common to find the require-
ments for a survey defined in terms of purity and complete-
ness. In Soumagnac et al. (2015), for example, the authors
formulate the scientific requirements for weak lensing and
large-scale structure studies in terms of these two observ-
ables.

‘Purity’ is a measurement of the contamination of a
sample by misclassified objects, which can also be called
precision or positive predictive value (PPV):

PPV =
TP

TP + FP
(10)

‘Completeness’ (also known as, recall) is another name
for the TPR defined in Equation 8. A good approach to

MNRAS 000, 1–20 (2018)



6 I. Sevilla-Noarbe et al.

Table 3. Selection methods.

Name Selection method for galaxies using threshold t

CLASS STAR CLASS ST AR < t

SPREAD MODEL SPREAD MODEL + 1.67 ∗ SPREADERR MODEL > t

CM T CM T + 2 ∗CM T ERR > t

MCAL RATIO MCAL RAT IO > t

ADA PROB ADA PROB > t

GALSIFT PROB GALSIFT PROB > t

SVM SVM PROB > t

CONCENTRATION PSF MAG I −CM MAG I > t

WISE J-K (J − K − 0.6)/(MAG AUTO G −MAG AUTO I ) > t

Table 4. Definitions of different figures of merit for classifiers, according to the outcome of the classification using a ‘truth’ reference (also
termed ‘confusion matrix’). The term ‘positive‘ can refer to ‘galaxy’ or ‘star’ classes depending on the use case. The metrics examined

in this work are emphasized in bold.

Prediction
Positive Negative

Truth
Positive

True Positive
(TP)

False Negative
(FN)

True positive rate
(TPR) = TP/(TP+FN)

False negative rate
(FNR) = FN/(TP+FN)

Negative
False Positive

(FP)

True Negative

(TN)

False positive rate

(FPR) = FP/(FP+TN)

True negative rate

(TNR) = TN/(FP+TN)

Positive predictive value

(PPV) = TP/(TP+FP)

False omission rate

(FOR) = FN/(FN+TN)
False discovery rate

(FDR) = FP/(TP+FP)
Negative predictive value
(NPV) = TN/(FN+TN)

easily compare the performances of several classifiers is to
use the precision-recall (PR) curve, where both quantities
can be visualized simultaneously.

4.3 Training and testing fields

The dataset on which we train the machine learning (ML)
codes is the weak lensing catalog from HST ACS in the
COSMOS field(Leauthaud et al. 2007), as this provides a
largely unbiased measurement of all extended and point-like
sources from DES (albeit the star-galaxy mixture is affected
by the specific position in the sky with respect to the Galac-
tic plane). In particular, the MU_CLASS parameter is used
for this reference, defined in the peak surface brightness -
MAG_AUTO space, which in space-based imaging shows very
distinct loci with respect to the same objects viewed through
the atmosphere. This has been used previously in star-galaxy
separation assessments in, e.g., Crocce et al. (2016) and Ai-
hara et al. (2018).

This training set, after a 1” positional match with DES
sources, contains ∼ 114k extended and ∼ 12k point-like
sources. The COSMOS dataset will also be used for some
tests only with the non-ML codes in order to avoid biased
conclusions based on their training in that same area.

Even in the case in which we use unbiased, imaging
data, the particular position on the sky of the field will condi-
tion the relative mixture of stars and galaxies in a prominent
way. Therefore we add some extra imaging data extracted
from the Hubble Source Catalog10 (Hubble-SC) (Whitmore
et al. 2016) where it overlaps the DES survey. Most of it is
either too inhomogeneous or targets specific objects (nearby,
large galaxies or globular clusters), but a few deep fields can

10 https://archive.stsci.edu/hst/hsc/

be matched with some of the SN fields from DES. In this
case we use the Hubble-SC catalogs’ concentration index
with a cut of 1.2 which seems optimal in the concentration-
magnitude plane.

Spectroscopy is also a valuable resource to provide a
one-to-one truth table for our classifications. However, the
spectroscopic targeting and measurement efficiency is not
complete in a statistical sense relative to the DES catalog,
as certain types of sources were given higher priority and
some types are more difficult to classify spectroscopically,
therefore the testing of purity/completeness can be strongly
biased. The photometric properties of the stars and galax-
ies selected can also be highly skewed to particular types
that introduce additional biases. This limits the usefulness
of any purity metric we try to derive from these fields. For
this reason, the spectroscopic datasets have been limited to
those that provide a relatively unbiased sample by construc-
tion, which includes the VVDS-DEEP and VVDS-CDFS (Le
Fèvre et al. 2013) data releases. We also constrain ourselves
to showing the ROC curves which are more insensitive to
these possible biases. The SDSS DR13 (Albareti et al. 2017)
updated spectro-photometric sample over Stripe 82 is also
used due to the relative variety of spectra available, and the
possibility to test our classification methods against ‘true’
spectroscopic typing. We use redshifts (a cut in z < 0.001)
as the method to identify stars. However, we also consider a
selection based on SDSS spectroscopic CLASS.

Both the COSMOS catalogs and the ones recovered
from the Hubble-SC have been cross-tested against spec-
troscopic catalogs (VIMOS-Ultra Deep Survey DR1 (Tasca
et al. 2017), zCOSMOS DR3 (Lilly et al. 2009), and VVDS-
CDFS (Le Fèvre et al. 2013)) to check the robustness of their
morphological classifications against a ‘true’ type based on
their spectra. In both cases, around 5% of spectroscopically
classified stars are misclassified as galaxies, whereas around
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2% of spectroscopically classified galaxies are misclassified
as stars. This happens at F814W magnitudes from the ACS
instrument greater than 24 (for COSMOS) and 23 (for the
miscellaneous Hubble-SC field), respectively, for each cat-
alog, denoting compact galaxies that are unresolvable by
HST. These corrections are not considered for the purity es-
timates derived here as they belong to fainter fluxes than
the truth tables used in our tests.

See Table 1 and Appendix B for details on the reference
data in different fields including the database queries used
to create these datasets.

4.4 Results

4.4.1 Using HST imaging

We compare here the results for the classifiers used on the
COSMOS field (excluding the ML codes that were trained on
this field) and the supernova fields for which we have found
publicly available deep HST data from the Hubble-SC.

• The results for the ROC comparison are shown in Fig-
ure 1 for the COSMOS field and Figure 2 for the SN fields
with Hubble-SC data. The AUC of the respective curves are
tabulated in Table 5.

From these plots it can be readily seen that among the
morphological classifiers, the algorithms based on a linear
discriminant over coadded images, SPREAD_MODEL, and in-
trinsic size on MOF estimates, CM_T, are the best performing
ones. It is also seen that the ML classifiers (in Figures 2
and 3) do perform better, even considering a different field
with respect to training as in the case of the Hubble-SC
test. It is noteworthy to point out that most of the differ-
ences showcased in Figures 1 and 2 become more evident
when we restrict ourselves to faint objects (i > 22). The
SPREAD_MODEL-based cut does a good job at avoiding stellar
contamination but suffers from decreased galaxy complete-
ness. This is a result of the galaxy locus merging with the
stellar locus in the magnitude-SPREAD_MODEL space where
noisier measurements will increase the effect even further.
CM_T fares better in this respect, but a conservative cut will
provide a more pure galaxy sample using SPREAD_MODEL. On
the other hand, the metacalibration size ratio does not per-
form as well as the other morphological classifiers, though
this measurement is noisier than the direct assessment of
sizes and shapes from the MOF pipeline.
• Figure 2 shows that ML classifiers are able to take ad-

vantage of ancillary information for very faint objects where
shape measurements are uncertain. Results with SVM in the
SN fields show that a ML approach based exclusively on
morphological and magnitude information can provide some
advantage over simple cuts on morphological variables. SVM
is shown to be robust outside of its training field, however
other machine learning algorithms provide an extra edge in
performance as shown by the higher AUC values. This is due
to forgoing the additional information encoded in the rest
of the variables available in the catalog. However, this ap-
proach could provide a middle-ground solution to the issues
one might encounter when incorporating color-based infor-
mation, which can incorporate interesting physics we would
not like to be entangled with our star-galaxy sample selec-
tion (see Section 6). Further developments of this approach
is explored in Wei et al. (in prep).

The comparison between the COSMOS and Hubble-SC
fields reveals that the CM_T classification is more robust as we
switch between fields. SPREAD_MODEL and CLASS_STAR, which
are derived from coadded PSFs are more vulnerable to the
contribution of bad exposures and PSF inhomogeneities in
the coadded image. It is worthwhile noting here that pre-
liminary tests on Y3 data (DES Collaboration 2018) using
Hyper Suprime Camera deep data (Aihara et al. 2018) re-
inforce this idea, which will be explored further in a future
publication, therefore favoring in general the use of a multi-
epoch classifier (such as CM_T based on the MOF pipeline).
Both the COSMOS field dataset and SN field coadds have a
much smaller dithering than the wide-field exposures. This
might artificially bias classifications based on the coadded
PSF to somewhat better performances than actually present
in the wide-field data.

• Figures 3 and 4 show the precision-recall metric, for
galaxies and stars respectively (COSMOS plots not shown
for conciseness, but provide similar conclusions).

These plots provide a similar conclusion as the ROC
curves, though in terms of more useful quantities with re-
spect to scientific requirements such as the recall (i.e. com-
pleteness) and precision (i.e. purity). Again, the CM_T mor-
phological classifier and the ML codes provide the best re-
sults, and this manifests even more strongly for selecting
a star sample (these results motivate the choice for stellar
classification based on multi-epoch pipelines in Shipp et al.
2018). It is noteworthy to add that the ML classifiers using
MOF quantities do not add much more than a straight cut
in CM_T itself, due to the large information content included
in this classifier with regards to star-galaxy classification.
On the other hand, the ML classifiers based on SExtractor

quantities are able to extract more value from the different
outputs of this code, with respect to a simple SPREAD_MODEL

cut.

• In Figures 5 and 6, we can appreciate the dependence
of the completeness with the magnitude as we go to the
fainter end in the sample, in the galactic and stellar case
respectively.

Unlike in the previous plots, in this case a choice of thresh-
old has to be made. We have decided to pick cuts in the
variables in question in order to have a similar galaxy pu-
rity (99%) in each magnitude bin, so we can compare com-
pleteness appropriately, and similarly for stars (80%). We
chose the COSMOS field which has good statistics to faint
magnitudes, though this disallows using the ML codes in
the comparison. This example shows a case where classifiers
such as the concentration estimation from the MOF pipeline,
not necessarily favored at first sight from the integral under
the ROC curve, works better in this regime due to its good
selection of very pure samples. The ROC curve only informs
about overall classifier performance (i.e. considering all pos-
sible thresholds), and different classifiers have to be tested
for the specific science case at hand.

For stars, a similar behavior is seen for CM_T, CONCEN-

TRATION and SPREAD_MODEL. CLASS_STAR for instance suf-
fers from a poor completeness near the faint end, as a high
thresholding cut in this case removes most of the objects,
which in the neural network tend to cluster towards inter-
mediate values when the object classification is uncertain.
MCAL_RATIO incorporates noisier measurements and addi-
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Figure 1. ROC plot for classifiers tested on the COSMOS
field. Only non-ML codes are shown, as they are trained in this

dataset. Magnitude range is given by MAG_AUTO_I = (17,24). The

SPREAD_MODEL-based cut is similar to MODEST_CLASS used in Y1
analyses. Galaxies are assumed to be the ‘truth’ for the purposes

of the ROC definition.

tional cuts to the sample that make it less complete when
providing a classified sample.
• In addition, in Figure 7 a similar comparison is shown

as a function of a realization of the photometric redshift
from the probability distribution function obtained from the
algorithm BPZ (Beńıtez 2000), this time also adding the
ML classifiers (again over the SN fields with Hubble-SC).
A similar conclusion is drawn from these plots; MOF fitting
methods and ML classifiers perform best, as indicated by the
ROC curves. Note the stability of the purity of the galaxy
sample with respect to photo-z, suggesting that a photo-
z selected sample would not be biased by the star-galaxy
separation classifiers analyzed here (however, see Section 6.1
for an important caveat to this conclusion).

4.4.2 Using ground-based spectroscopy

Turning now to tests on the overlapping spectroscopic data,
we show ROC plots to demonstrate the consistency with the
results from the previous section and add a comparison with
external infrared information.

Figure 8 shows the ROC for the VVDS test and Figure
9 shows the ROC for the Stripe 82 test. The former does not
add much to the conclusions mentioned above, but provides
an assurance that conclusions are consistent with a different
class of ‘truth’ typing. We also add here a test on the SN
fields computing the ROC curves and their areas, versus the
signal to noise of the detected objects, to demonstrate it
behaves as expected as well, including the ML codes (see
Figure 10).

The stripe 82 dataset is shallower and therefore does not
allow for a clear distinction between the performance of most
of the algorithms described here. The comparison with the
combination with external infrared color cuts on the other
hand, shows an important increase in performance, specifi-
cally when attempting to select a very pure stellar sample,

Figure 2. ROC plot for classifiers tested on the SN fields over the
Hubble-SC catalog. Magnitude range is given by MAG_AUTO_I =

(17,24). The SPREAD_MODEL-based cut is similar to MODEST_CLASS

used in Y1 analyses. Galaxies are assumed to be the ‘truth’ for
the purposes of the ROC definition.

Figure 3. Precision-Recall (or completeness-purity) plot for clas-

sifiers tested on the SN fields over the Hubble-SC catalog, us-
ing galaxies as truth. Magnitude range is given by MAG_AUTO_I

= (17,24). The SPREAD_MODEL-based cut is similar to the MOD-

EST_CLASS used in DES Y1 analyses.

as already advanced in Baldry et al. (2010) and Banerji et al.
(2015). It is important to note here again that the nature of
the test is different with respect to the ones based on space
imaging. In this case we are using spectroscopic redshifts
to determine the nature of the object (galactic or extra-
galactic) and not its extendedness. What we see here is that
infrared information will select out the stars from the galaxy
and QSO (which are point-like generally) population which
is truly what we intend. We have also attempted to add W1-
J version from 2MASS and WISE (as suggested in Kovács
& Szapudi (2015)) but the matches proved too shallow to
be of any interest for these samples.

Unfortunately, the current VHS data does not cover the
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Table 5. Area under the ROC curves for different classifiers. Dashes indicate tests that have not been run for that specific code and
dataset combination.

Name COSMOS, imaging SN fields, imaging SN fields, spectroscopy stripe 82, spectroscopy

CLASS STAR 0.898 0.885 0.950 0.969
SPREAD MODEL 0.954 0.956 0.975 0.952

CM T (MOF) 0.957 0.959 0.971 0.965

CONCENTRATION (MOF) 0.938 0.950 0.959 0.937
MCAL RATIO 0.910 0.924 – –

VHS J-K vs G-I – – – 0.990

ADA PROB – 0.978 0.983 0.955
ADA PROB (MOF) – 0.965 0.980 0.956

GALSIFT PROB (MOF) – 0.966 0.981 0.958

SVM – 0.962 – –

Figure 4. Precision-Recall (or completeness-purity) plot for clas-

sifiers tested on the SN fields over the Hubble-SC catalog, using

stars as truth. Magnitude range is given by MAG_AUTO_I = (17,24).
The SPREAD_MODEL-based cut is similar to the MODEST_CLASS used

in DES Y1 analyses.

Figure 5. Completeness of a galaxy sample as a function of
magnitude for classifiers tested on the COSMOS field, for a fixed
galaxy purity of 99%.

Figure 6. Completeness of stellar sample as a function of mag-

nitude for classifiers tested on the COSMOS field, for a fixed 80%

purity.

Figure 7. Purity of the galaxy sample as a function of photo-z for

classifiers tested on Hubble-SC matches over the SN fields field,

for a fixed 90% completeness. We use a random MonteCarlo sam-
pling of the probability distribution function of redshift predicted

by BPZ for that particular object as an estimate of its photo-z.
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Figure 8. ROC plot for classifiers tested on the SN fields over
the VVDS catalogs. Magnitude range is given by MAG_AUTO_I =

(17,24). Galaxies are assumed to be the ‘truth’ for the purposes

of the ROC definition.

Figure 9. ROC plot for classifiers tested on the Stripe 82 region

overlapping SDSS and VHS data. Magnitude range is given by

MAG_AUTO_I = (17,21). Note the logarithmic scale in the x-axis
in this instance. Galaxies are assumed to be the ‘truth’ for the

purposes of the ROC definition.

full breadth and depth of the survey and a careful com-
bined catalog with adequate matching is needed (overcoming
the less precise infrared astrometry) beyond what was done
here for comparison purposes. Cross-matching with bright
sources will be explored in more detail with DES Y3 data
with the goals of enhancing star selection for creating PSF
models and reference catalogs for large scale structure. A
combination of classifiers, as done for instance in Kim et al.
(2015) or Molino et al. (2014), seems to be an appropriate
option in this case and even more so if forced photometry of
VHS data can be performed survey-wide for DES (Banerji
et al. 2015). This would also have important applications for
photometric redshift determination (Banerji et al. 2008).

Figure 10. Area under the curve measured for the same classifiers
as Figure 8, for different signal-to-noise thresholds.

5 PERFORMANCE ON APPLICATION FIELD

It has been shown by Fadely et al. (2012) that machine learn-
ing techniques in star-galaxy classification will perform bet-
ter if a representative training dataset is found. We have
studied the impact of this effect by testing ML algorithms
over different fields other than the training set in Section 4.
However all these additional areas are quite constrained ei-
ther in depth or area, when compared to the complete DES
volume.

In this section, we extend the scope of the performance
tests in classification to have a broader picture, by making
the following checks on the application field (see Section 2):

(i) General distribution of the classifier-flux space to qual-
itatively analyze the algorithms’ outputs.

(ii) Number count distributions of stars against a well-
tested simulation, both as a function of magnitude and as
function of galactic latitude.

(iii) Galaxy versus star density profiles in search of corre-
lations, using different proxies for the true stellar distribu-
tion.

(iv) Density of classified galaxies as a function of proxim-
ity to the Large Magellanic Cloud.

(v) Consistency of classified stars with the expected stel-
lar locus (Covey et al. 2007).

Except where noted, the sample sizes for each of these
cases are approximately 1 million objects, limited by the size
of tested region, magnitude range or photo-z binning.

5.1 Classifier outputs

A first step towards understanding the quality of classifica-
tion for different algorithms in the application field of DES
is to study the outputs as a function of magnitude and the
number counts of classified objects.

In Figure 11 several density plots showcase how objects
distribute in the classifier-magnitude space. These distribu-
tions are based on a 1% sample of the Y1 Gold catalog.
Direct morphological outputs from the DESDM pipeline
CLASS_STAR, SPREAD_MODEL and CM_T) show two loci that
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merge in the faint end. CLASS_STAR outputs merge into a
region of 50% probability by construction of its base neural
network. This uncertainty region appears at shallower mag-
nitudes than other classifiers as shown previously, due to
the characteristics of the simulations used for its training.
However, a classifier using a feature importance selection
manifests a more ‘clear-cut’ classification of objects, with a
large predominance of galaxies at the faint end, as expected.
This can be attributed to the fact that there is a large pre-
dominance of galaxies over stars in raw numbers (a very
imbalanced dataset) at faint magnitudes, so the algorithms
will ‘learn’ that the most probable classification for a given
object in this range is a galaxy.

5.2 Number counts of classified stars

On the other hand, if we limit our study to the point in which
Y1 data are fairly complete over a large area (r ∼ 22.5),
we can assess for instance the similarity of the stellar dis-
tribution in magnitude versus a detailed simulation such as
Galaxia (Sharma et al. 2011), which has been tested against
Gaia DR1 data (Gaia Collaboration (2016), Koposov pri-
vate communication). This is shown in Figure 12 for a few
selected classifiers, spanning a varied range of those men-
tioned in Section 3, in the DES r band. Thresholds were
used to provide a similar number of stars as MODEST_CLASS,
the default DES Y1 Gold star-galaxy classifier based on
SPREAD_MODEL. Up to r ∼ 21, the behavior for most of them
with respect to the simulation is similar. Two machine learn-
ing classifiers based on MOF quantities show a significant lack
of brigh objects (r < 19) due to failures from the Y1 version
of the MOF pipeline in fitting stars in this regime11. This has
been identified as failures of the galaxy fits for which MOF

was designed when applied to moderately bright stars. A
consistent overestimation of stars by Galaxia with respect
to DES stars is apparent for all classifiers, as was seen in Li
et al. (2016). On the other hand, other simulations such as
the ones described in Robin et al. (2003) and Girardi et al.
(2005) show discrepancies of this size as well at this latitude
and longitude. This disappears at the faint end, as compact
galaxies start to leak into the stellar sample. After that, a
completeness drop kicks in as we enter the survey’s mag-
nitude limit. At the faint end, CLASS_STAR shows a drop in
completeness sooner than the other classifiers. The nature of
this classifier, which provides an intermediate value of prob-
ability for ‘uncertain’ sources, is such that a fixed threshold
cut tends to ‘lose’ stars at the faint end, if we adjust all
classifiers to the same number of stars.

5.3 Stellar density as a function of Galactic
latitude

As a complementary measure of goodness of stellar iden-
tification, we compare the number of stars as a function of
Galactic latitude (Figure 13). We limit the comparison to the
range in which any possible issues deriving from the current
MOF processing are avoided (see Section 5.2). A slight deficit
is seen nonetheless as was verified before, but the compari-
son of all these different approaches are qualitatively in the

11 Y3 Gold MOF photometry has solved this issue.

same range, without any preferred or outstanding behavior
from any of the classifiers tested here.

5.4 Galaxy vs stellar density

As mentioned in Section 4.2, we do not have a large-scale
‘truth’ table available that we could use as reference to check
the precision of our classification on an object-by-object ba-
sis. However, several studies of large-scale structure (e.g.,
Ross et al. 2011) have devised an estimate of the purity of
the galaxy sample, for a given classification scheme, by mea-
suring correlations of classified galaxy density versus some
reliable measurement of the relative stellar distribution (us-
ing a very pure cut for stars, a model, or an external cata-
log). This is done via the pixelization of the field using the
HEALPix software (Górski et al. 2005) and fitting a linear re-
lation between the galaxy overdensity as a function of stellar
density in said pixels. For this study we used a pixelization
parameter NSIDE=512, which corresponds to a pixel size of
approximately 0.01 square degrees.

In Figure 14 and Figure 15 we show a comparison of sev-
eral classifiers, tested on the application field for the galaxy
sample with the magnitude cuts shown in Table 6. The in-
tercept value of the linear fits can be used to estimate the
purity of the galaxy sample (actually, a combination of the
galaxy sample purity and the stellar obscuration effect, by
which stars of moderate brightness block the fainter galax-
ies around them). We adjusted the cuts for the classifiers to
provide a similar number of detected ‘galaxies’ (i.e. a similar
completeness) as MODEST_CLASS, in order to get a better han-
dle on how purity compares on the same grounds, similarly
to what we did on Section 4.4.1.

We note that using the application sample in bulk shows
no strong contamination component for the SPREAD_MODEL-
or MOF-based quantities or for the machine learning ap-
proaches using magnitude and color information. Slightly
better performance is found using MOF quantities and the
ADABOOST code, especially for fainter objects. This is ex-
plained by the more accurate shape measurement of the
MOF code and by how additional information is captured by
ADA_PROB_MOF.

One of the components of these calculations is the choice
of a star map to establish the density relationships. We
have derived a ∼ 1% systematic uncertainty in the estima-
tion of the impurity derived from comparing brighter and
fainter stellar samples (Figure 16). The 2MASS and Tycho-2
(Skrutskie et al. 2006; Høg et al. 2000) stellar maps are in-
cluded for completeness, but their magnitude range does not
track accurately the range of brightness we need to account
for Milky Way distribution in DES. Gaia’s DR2 corresponds
to the data described in Gaia Collaboration et al. (2018).

5.5 Galaxy ratio near the Large Magellanic Cloud

Using the same pixelization as above, we also approach the
comparison of different classifiers using a figure of merit
based on the identified galaxy density in each of these pixels,
as compared to the one found at a certain distance to the
center of the Large Magellanic Cloud (LMC), set at (α,δ) =
(5h23m34.5s, −69◦45’11”). This value is normalized to one
at 30 degrees from the center of the LMC (Figure 17). Here
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(a) CLASS STAR (b) SPREAD MODEL (c) CM T

(d) ADA PROB (e) ADA PROB MOF (f) GALSIFT PROB MOF

Figure 11. Object classification heatmaps as a function of magnitude for different classifiers. The black line represents the cut for which

a 99% galaxy purity is obtained in the Hubble-SC sample in the i=(17,24) magnitude range. With the exception of CLASS STAR, all

classifiers assign higher values to extended sources.

Table 6. Contamination for different classification methods for the galaxy vs stellar density tests. Threshold cuts were selected to adjust

to the same number of detected galaxies as provided by MODEST_CLASS.

Sample MODEST CLASS CLASS STAR ADA PROB ADA PROB MOF GALSIFT PROB MOF CM T

i< 22 1.4 ± 0.6% 2.8 ± 0.2% 1.0 ± 0.5% 0.9 ± 0.5% 0.8 ± 0.6% 0.8 ± 0.6%
i< 23 1.7 ± 0.7% 5.1 ± 2.8% 0.6 ± 0.7% 0.2 ± 0.7% 1.2 ± 0.6% 0.8 ± 0.6%

Figure 12. Counts for stars as classified by different algorithms
compared to a Galaxia simulation (Sharma et al. 2011) using
DES photometry, in the patch of the Y1 DES footprint with

45<RA<50, -45<DEC<-50.

we use a flux limited sample with i < 23. In this case, we
can see a clear advantage in using a classifier with multiple
input attributes (including color), possibly helped by the
fact that in a crowded field such as the peripheries of the
LMC, morphology starts to have a smaller discriminating
power. On the other hand, the LMC has a bluer population,

Figure 13. Counts for stars as classified by different algorithms
compared to a Galaxia simulation (Sharma et al. 2011) for the
application field (SPT region of the DES-Y1 footprint) for the

magnitude range r = (19,21.5).

but this doesn’t seem to offset the ML classification signif-
icantly, though this aspect is worth studying further in a
future work.

Using a metric such as this at a given fixed distance
of the LMC could be useful as a figure of merit. In this
case 10 degrees seems convenient but we must remark that
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Figure 14. Galaxy vs star density plot for several classifiers,

i < 22.

Figure 15. Galaxy vs star density plot for several classifiers,

i < 23.

Figure 16. Star contamination levels for different stellar maps.

A ∼ 1% systematic uncertainty is derived by comparing the MOD-

EST_CLASS moderate to bright stars, is estimated from this plot.
Tycho and 2MASS stars are added for comparison, but their mag-

nitude ranges (much brighter than the stellar sample considered
as contaminants) do not make them good candidates for deriving
this uncertainty.

Figure 17. Galaxy ratio (with respect to galaxy density at 30

degrees from LMC) for as a function of angular distance from the
LMC center.

Figure 18. Fit to stellar locus using a fifth degree polynomial

this could be due to the odd geometry available around the
LMC, so other photometric surveys might find other ranges
for comparison more valuable.

5.6 Stellar locus of classified stars

Finally, we tested the consistency of the stellar locus de-
rived in r − i vs. g − r color space to a similar fit to stars
in the COSMOS field. The stellar locus was fit by a fifth-
order polynomial, as shown in Figure 18, similarly to what
is realized in Covey et al. (2007). The same fit curve from
Figure 18 is shown again versus several classifiers in Figures
19 and 20. In general a good agreement is seen except for
the faintest end, where classified stars seem to deviate from
the expected stellar locus for CLASS_STAR.

6 DISCUSSION: IMPLICATIONS FOR
LARGE-SCALE STRUCTURE AND MILKY
WAY STUDIES

In the previous section we explored a variety of tests both
with and without truth information assessing the relative
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Figure 19. Stellar locus for star samples from various classifiers

(i < 21)

Figure 20. Stellar locus for star samples from various classifiers
(i < 24)

performance of a wide range of star-galaxy classifiers in DES
Y1 data. We now turn to the impact of making different se-
lections on scientific analyses of interest to astronomers and
cosmologists. Though it is beyond the scope of this work to
define specific choices for any arbitrary study, in this sec-
tion we sketch out the general implications of the results
shown here for two broad ranging topics of interest, namely
the large-scale structure (LSS) of galaxies and Milky Way
analyses within DES. With regards to weak lensing shear
catalogs, Zuntz et al. (2017) have shown that star-galaxy
contamination is at most a second-order contaminant when
either MODEST_CLASS or MCAL_RATIO are used for the DES
Y1 cosmology analyses. For a thorough discussion on LSS
and weak lensing requirements for star-galaxy separation,
Soumagnac et al. (2015) provides an in-depth review.

6.1 Large-Scale Structure

The impact of stellar contamination on studies of clustering
amplitude has been well studied for several years now (Ross
et al. 2011; Crocce et al. 2016, e.g.,) with an impact of the
order of (1 − I)2 in the angular correlation function ω(θ) if

Figure 21. Stellar contamination level as a function of redshift:

i< 22

Figure 22. Stellar contamination level as a function of redshift:

i< 23

we assume an unclustered component that contaminates the
galaxy population with impurity fraction I. A large contam-
ination can severely dilute the signal (reducing the signifi-
cance of the BAO peak as shown by Carnero et al. (2012)), or
even create a large-scale component if unaccounted for, thus
mimicking an effect such as primordial non-Gaussianities
(Giannantonio & Percival 2014). However, in the range I ∼
O(2%), the accuracy by which we determine I becomes much
more relevant, as this is the systematic that will dominate
in the determination of the uncertainty in galaxy bias mea-
surements and multiple probe analyses.

Figures 14 and 15 imply that the choice of classifier
does not matter too much for cosmology analyses in the
broadest sense. However, going into a more realistic sample
for large scale structure studies, using a selection for red
galaxies that have better estimated photo-z and galaxy bias
(Crocce et al. 2017) for BAO analysis for example, some
evident differences appear for the highest redshifts (where
due to their colors, many faint stars are mis-classified into
those bins of photo-z). This is the main photo-z region of
interest for BAO for DES. Also between the classifiers, which
become more evident when the flux cut is driven to fainter
magnitudes as shown before. See Figure 21 and Figure 22.
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Figure 23. Normalized distribution of BPZ redshifts for a typical

red galaxy sample that would be used for LSS studies, over a
region with known identification of stars and galaxies through

Hubble Space Telescope imaging.

These results show that a realistic LSS sample, is more
severely affected by stellar contamination, driving the impu-
rity levels up to 5 − 6% in some redshift bins. This is seen
more clearly in Figure 23 where photo-zs are shown for the
true stars in the fields overlapping the COSMOS region for a
general selection and an LSS-like, red galaxy selection. One
way to drive down this impurity therefore is to either ap-
ply more stringent constraints to the star-galaxy thresholds,
sacrificing a percentage of true galaxies along the way. For
the case of MODEST_CLASS and ADA_PROB_MOF, we can push
down to 2% by removing ∼9% and ∼4% galaxies respectively.
Though a ML approach seems more convenient in this case,
the use of color and magnitude information may lead to po-
tential correlations between object classification and photo-z
determination that must be investigated in more detail. As
for the uncertainty of determining I using the density plots,
Figure 16 shows that using fainter stellar maps to derive the
impurity via this method generates a different contamina-
tion rate. This can be due to tracing of different components
of the Galaxy, but for maps built upon possibly contami-
nated data it could well be that the star maps themselves
are not ideal (e.g. the bright MODEST_CLASS stars could have
a small component from misclassified compact galaxies). An
improvement in understanding the underlying Galactic stel-
lar structure through simulations or an adequate culling of
the reference stellar maps to improve agreement would re-
duce this limitation in the determination of the impurity
level, I.

6.2 Milky Way

In the case of Milky Way studies, in broad terms we are
interested in obtaining a more complete and pure stellar
sample, down to faint magnitudes. Studies such as those in
Fadely et al. (2012), show that currently this can become
a major systematic effect in deriving the Galaxy structure.
Additionally, misclassified galaxies become a limiting factor
for discovering faint resolved stellar overdensities (Willman
2010; Bechtol et al. 2015; Drlica-Wagner et al. 2015; Pieres
et al. 2017, e.g.,). This problem is evidenced returning to

Figure 24. Star-galaxy ratio in differential MAG_AUTO bins, taken
from the COSMOS ACS catalog. Point-sources are overwhelmed

by extended sources in the faint end.

the COSMOS ACS catalog used in Section 4, which can be
used to understand the ratio of stars to galaxies up to a very
faint limit (shown in Figure 24).

In this sense, the results in Pieres et al. (2017) or Shipp
et al. (2018), for example, show that the very good results
can be obtained based on a multi-epoch based classifier such
as the weighted averaged SPREAD_MODEL quantity or the MOF

pipeline.
The use of machine learning codes in this case is lim-

ited by the fact that if we want to study the distribution
of specific types of stars, or search for Milky Way neighbors
with a particular range of colors and magnitudes, we have to
be very careful with introducing biases or complex selection
functions in our application sample, much like what happens
with photometric redshifts for the LSS case.

What the results of the current study show (e.g. Figure
4) is that the MOF technique has the potential of being the
best candidate for selecting stellar candidates from its very
tight morphological stellar locus and its capacity of reach-
ing deeper into the separation of extended and point-like
sources, by increasing by ∼ 20% the amount of stars in the
sample for a given purity and magnitude cut versus a ‘classi-
cal’ SPREAD_MODEL cut (in this plot, at 0.8 purity we go from
0.70 to 0.84 completeness). However, additional fine-tuning
of the algorithm is needed to reach a good completeness in
the bright end, where the model fit is not especially attuned
to fits of stellar shapes. This is an open line of development
in the algorithm in DES.

7 CONCLUSIONS

In this paper, we have compiled a wide variety of tests
over a diverse array of star-galaxy classifiers for the DES
Y1 dataset. These tests can be ported or used as exam-
ples for any other photometric dataset. The classifiers range
from well-tested algorithms in the literature, to new devel-
opments using morphological information and/or flux infor-
mation, using priors for stars/galaxies or training sets for
machine learning codes based on space imaging information
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from the Hubble Space Telescope. We have studied their
relative performance both using accurate truth information
from spectroscopic and space imaging external datasets, and
devised tests over the broad DES Y1 footprint that do not
require this information. In the light of these results, we
have analyzed the impact of using these algorithms on two
broad science cases of interest to users of the DES data,
namely, large-scale structure analyses and Milky Way stud-
ies. Star-galaxy classification remains as a non-dominant but
important systematic source of error for cosmology, and very
critical for Milky Way structure measurements and discov-
eries. These are the specific items that were highlighted in
this work:

• Machine learning methods perform very well on calibra-
tion fields tests (Figures 2 to 4 and Table 5). In the appli-
cation field the results are slightly better than for non-ML
classification, especially in the faint end (Figure 22). Optical
color based classifiers however could potentially introduce
biases in sample selection.
• Although CLASS_STAR has been used in the past to good

effect, its lack of performance in the faint end (see e.g. Fig-
ures 1 and 12) leads us to recommend alternative classi-
fication methods such as SExtractor’s SPREAD_MODEL or a
multi-epoch fit to the shape. In this sense, using multi-epoch,
multi-object fitting instead of directly using coadded infor-
mation is the preferred option for object classification in
optical wavelengths (as shown in Section 4).
• As has been demonstrated in the past, the addition of

infrared data is very valuable, albeit limited currently by the
depth and extension of such surveys (Section 4.4.2).
• Photometric redshift binning will affect stellar contam-

ination of specific galaxy samples (Figure 23).

7.1 Expected improvements for Y3 and beyond

Considering these results, we have identified very clear fu-
ture directions to expand and improve star-galaxy classifica-
tion in forthcoming DES science analyses (Y3 and beyond).

• Improvement of the MOF quantities to better fit stellar
shapes and prevention of fitting failures.
• Understanding the impact of using color information on

specific science cases (photo-z, stellar type selections) to as-
certain whether or not the usage of this information in ML
codes hampers their utility for star-galaxy separation in ex-
tragalactic and Milky Way studies respectively, in exchange
of an additional 2-5% in purity depending on the case.
• The combination of information as done in Kim et al.

(2015) from different approaches, especially adding exter-
nal infrared colors, could greatly benefit the performance
of some classifiers. Once an adequate template set is stud-
ied for the DES data, trying to overcome the impact of the
lack of u-band information, template-based codes could be
considered as well to complement this impact study. In ad-
dition, this would provide a truly probabilistic output that
could be employed in statistical studies of large-scale struc-
ture, removing the need of having to eliminate a subsample
of galaxies according to an arbitrary threshold.
• Besides VHS data, the addition of Gaia’s DR2 infor-

mation (Gaia Collaboration et al. 2016, 2018) will provide a
robust and broad complement to these tests at magnitudes
r < 21.

7.2 Ideas for further study

Finally, we call attention to other approaches and tests that
we have not specifically investigated here which could be
relevant for future studies:

• Adding available u-band and infrared band information
as part of the ML algorithms used here.
• With respect to a template-fitting approach, the char-

acteristics of this dataset (lack of u-band or infrared informa-
tion), severely limit its usability. But expanding the dataset,
jointly with an accurate understanding of the template range
to be used can be considered as a promising approach if
these requirements are met, to be used in a joint probabilis-
tic method.
• Including very detailed image-based simulations for

training, such as Balrog (Suchyta et al. 2016) or UFIG

(Chang et al. 2015), to understand the failure modes of dif-
ferent classifiers.
• Adding seeing as part of the features of the machine

learning classifiers, as well as for characterization of the per-
formance of the different approaches.
• Usage of the object position in the sky can also provide

an additional lever for a probabilistic approach, as a prior to
be added to the overall posterior estimation. This should be
approached with care for certain analysis (e.g. Milky Way
structure).
• PSF homogeneization will improve the SExtractor es-

timates as shown in Desai et al. (2012). However, using
MOF-based photometry is a more promising alternative that
avoids some of the problems associated with homogeneiza-
tion.
• Convolutional Neural Networks (e.g., Kim & Brunner

2017) can be applied directly to the images to provide a new
and complementary approach to ML applied at catalog-level.
Image-level analyses may benefit by using information from
multiple (>10) bands (e.g., Cabayol et al. in prep.).

Reference catalogs used in this work will be made avail-
able upon publication. .
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APPENDIX A: ADA_PROB TECHNICAL DETAILS

This appendix describes the details of one of the machine
learning frameworks called ADA_PROB.

The framework first selects an exhaustive list of pho-
tometric properties, or features, and generates linear com-
binations of these features to produced new features. This
may include unphysical combinations, such as magnitudes
and radii being combined. We also generate features ‘intel-
ligently’, by using the current state of the art. For the prob-
lem of star-galaxy separation for DES, this means including
both a binary MODEST_CLASS class value, and a continuous
MODEST_CLASS variable for both stars and galaxies.
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Next, the enormous feature list is sorted by rank, using
the value of the mutual information12, which is a non-linear
correlation coefficient, between the selected feature and the
target class. Finally the top 150 features are selected to form
the inputs to the machine learning algorithms.

The framework then explores many machine learning al-
gorithms, each of which are trained with random variations
of each of their own hyper-parameters. The framework ex-
plores a plethora of algorithms, drawn from the sci-kit-learn
(Pedregosa et al. 2011) package. These include AdaBoost,
which often performs well, and also Random Forests, Ex-
tra Randomized Trees, Quadratic Discriminant Analysis and
the K-Nearest Neighbors Classifier.

The performance of each selected algorithm and set of
hyper-parameters is quantified by measuring the average F1
score on 30 held out samples during 30 fold cross validation.
The F1 score is the geometric mean between the precision
and the recall, and 30 fold cross validation is akin to making
30 jackknife samples of the data, training on all but the held
out sample, and then making predictions on that held out
sample, and then repeating. The held out jackknife results,
or “class weights”, for each training object are retained for
future classification calibration.

The winning algorithm and hyper-parameter set is then
retrained on the full training sample. The training procedure
is deemed to have been completed once at least 50 systems
have been explored and when the F1 score has not been
improved upon after 20 iterations. In our empirical experi-
ence, we find this to be a generally stable point at which one
can stop the exploration of the different algorithms, hyper-
parameters, and move on to the final stage of the framework.

This final stage then uses isotonic regression to cali-
brate the held out class weights of the training data. This
enforces the statistical properties of the class weights to more
closely resemble a probability. This rescaling is performed by
comparing the total number of those objects within a class
weight bin, with the fraction of objects to have the true class
value. This comparison leads to a rescaling of class weights
to class probabilities which we note are conditional on the
training data.

The winning machine learning algorithm, which hap-
pened to be AdaBoost in this case, is then used to make
class weight predictions on both the test sample and the sci-
ence samples, and their output class weights are scaled using
the previously learned rescaling, to make them more closely
resemble probabilities.

We can also perform a feature importance analysis
(see, e.g., Hoyle et al. 2015) which suggests that the fea-
tures with the most predictive power are indeed those
derived from MODEST, with other ranking features being
WAVG_SPREAD_MODEL_R and MAGERR_MODEL_I.

APPENDIX B: EXTERNAL DATASETS

B1 Access to external catalogs used in this work

Reference catalogs used in this work will be made available
upon publication. .

12 https://en.wikipedia.org/wiki/Mutual_information

B2 Queries used to extract the datasets

Query to the SDSS CASJOBS interface (used as imaging
truth table for some tests):

SELECT

s.ra, s.dec, s.dered_r, s.class,

w.w1mpro as w1, w.j_m_2mass as j,

s.z, s.zErr

INTO

mydb.stripe82_wise_2mass_z_match

FROM

wise_xmatch as xm

JOIN

specPhotoAll as s on xm.sdss_objid = s.objid

JOIN

wise_allsky as w on xm.wise_cntr = w.cntr

WHERE

((s.dered_g < 23.0) or (s.dered_r < 23.0)

or (s.dered_i < 23.0)) and ((s.ra > 0 and

s.ra < 5 and s.dec > -2.5 and s.dec < 3.5)

or (s.ra > 315 and s.dec > -3 and s.dec < 3))

and zWarning = 0

Query to the Hubble Source Catalog CASJOBS interface
(used as imaging truth table for some tests):

SELECT

p.MatchRA, p.MatchDEC, p.MatchID as hscv2_id,

p.CI, p.CI_Sigma, m.A_F814W, m.A_F814W_Sigma

INTO

hsc_source_catalog

FROM

SumPropMagAutoCat p

JOIN

SumMagAutoCat m ON p.MatchID = m.MatchID

WHERE

m.A_F814W > 0 and m.A_F814W_Sigma is not null

and p.numimages > 2

Query to the VISTA Science Archive, using the VHSDR3
database.

SELECT ra,dec,jpetromag,jpetromagerr,jmksext,jmksexterr

FROM

vhsSource

WHERE

jerrbits = 0 and kserrbits = 0 and

(priOrSec=0 OR priOrSec=frameSetID) and

dec between -2 and 2 and (ra > 315 or ra < 5)

Query to Gaia’s DR2, using the CosmoHub (Carretero et al.
2017) interface.

SELECT ‘ra‘, ‘dec‘, ‘phot_g_mean_mag‘, ‘l‘, ‘b‘, ‘phot_g_mean_flux_over_error‘, ‘astrometric_primary_flag‘

FROM gaia_dr2

WHERE

((‘ra‘ > 305) or (‘ra‘ < 90)) and (‘dec‘ > -61) and (‘dec‘ < -35) and phot_g_mean_mag > 18.5
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