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ABSTRACT
We use the stacked gravitational lensing mass profile of four high-mass (M! 1015M!) galaxy
clusters around z≈ 0.3 from Umetsu et al. (2011) to fit density profiles of phenomenological
(NFW, Einasto, Sérsic, Stadel and Hernquist) and theoretical (non-singular Isothermal Sphere,
DARKexp and Kang & He) models of the dark matter distribution. We account for large-
scale structure effects, including a 2-halo term in the analysis. We find that the Stadel model
provides the best fit to the data as measured by the reduced χ2. It is followed by the generalized
NFW profile with a free inner slope and by the Einasto profile. The NFW model provides the
best fit if we neglect the 2-halo term, in agreement with results from Umetsu et al. (2011).
Among the theoretical profiles, the DARKexp model with a single form parameter has the
best performance, almost identical to that of the Stadel profile. This may indicate a connection
between this theoretical model and the phenomenology of dark matter halos, shedding light
on the dynamical basis of empirical profiles which emerge from numerical simulations.
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1 INTRODUCTION

Evidence for the existence of dark matter dates back to Zwicky
(1933) with studies of the kinematics of galaxies in the Coma
Cluster, which required the presence of a massive, smooth and
dark component generating the cluster gravitational potential. More
recently, astrophysical and cosmological observations as well as
simulations and theoretical arguments have provided further in-
dication for the existence of dark matter, and hopes that it may
be detected directly in particle accelerators (see for example
Frandsen et al. 2012, and references therein). These developments
include the flatness of galaxy rotation curves (e.g., Bosma 1978;
Bosma & van der Kruit 1979; Rubin et al. 1978, 1980), the mass
of galaxy clusters inferred either by their X-ray emission (e.g.,
Allen et al. 2002; Vikhlinin et al. 2006) or by gravitational lens-
ing (e. g. Clowe et al. 2006; Umetsu et al. 2011; Mira et al. 2011),
the acoustic oscillations measured in the cosmic microwave back-
ground (see WMAP papers, e. g Jarosik et al. 2011) and in galaxy
surveys (e. g. Eisenstein et al. 2005; Sánchez et al. 2012), and de-
tailed studies of structure formation on numerical simulations with
ever increasing precision (e.g. Springel et al. 2005; Alimi et al.
2012).

In the standard scenario, dark matter is assumed to be com-
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posed of particles that interact gravitationally but not electromag-
netically. Within this picture, simulations of structure formation
have shown a number of interesting results regarding the final states
of systems of gravitationally interacting particles. For example, it
has been shown that dark matter is cold, i.e. its particles must have
had non-relativistic velocities around the epoch of recombination,
otherwise structures like galaxies and galaxy clusters would be
more diffuse than they appear due to free-streaming.

Another feature that emerges from simulations, and is con-
firmed by observations, is that these systems seem to achieve a fi-
nal state of equilibrium, displaying nearly universal density profiles
ρ(r) (Navarro et al. 1996, 1997) and pseudo phase-space profiles
ρ(r)/σ3 (r) (Taylor & Navarro 2001) where σ(r) is either the ra-
dial or total velocity dispersion. This is intriguing because these
non-collisional systems interact only through gravitational effects,
making them quite different from e.g. a molecular gas in a box. We
are then led to approach the question of how a non-collisional pro-
cess could bring a gravitational system to an equilibrium state in a
time scale of the age of the Universe.

In an attempt to answer this kind of question, Lynden-Bell
(1967) developed the mechanism of violent relaxation, in which
the system’s constituents, e.g. stars or dark matter particles, interact
mainly with a time-varying average gravitational field, for which
the time scale to achieve an equilibrium state is many orders of
magnitude smaller than that of two-particle interactions. However
there are issues in this approach, like infinite masses and mass seg-
regation. These happen because the model generates density pro-
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files similar to that of an Isothermal Sphere (see below). For more
details on these and other critics to the Lynden-Bell (1967) ap-
proach, see e.g. Hjorth & Williams (2010) and references therein.

Regardless of the discussions about the statistical process in-
volved, the density profiles provided by simulations are observed in
real objects like galaxy clusters, in which the role of the baryonic
component is relatively small compared to that of dark matter. Phe-
nomenologically, one can argue that if simulations provide density
profiles which match those in observed data, that means that the
assumptions made in the simulations are likely correct, and the ob-
served features are consequences of the gravitational interaction.
Nonetheless, a deeper understanding of the physical mechanisms
that lead to equilibrium in gravitational systems is certainly desir-
able. In fact, ignoring this issue would be equivalent to making sim-
ulations of a molecular gas in a box and computing gas pressure and
velocity distribution from the simulated results, with no regards to
the kinetic gas theory developed by Maxwell, Boltzmann and oth-
ers.

In order to have a better dynamical picture of gravitational sys-
tems in general, and of dark matter halos in particular, first principle
models have been developed to explain the features seen in simu-
lations and observations. In particular, there has been a great effort
to make predictions of the three-dimensional density profile ρ(r)
of dark matter halos. The connection with observations is made via
the surface density profile Σ(R) projected in the line-of-sight x‖

Σ(R) =
∫
dx‖ ρ(x‖,R) , (1)

where r= (x‖,R) and R is the projected distance on the plane
of the sky. Compared to galaxies, for which dissipative effects of
cold baryons are important, galaxy clusters are excellent to test the
distribution of dark matter, because in clusters most of the baryons
are hot and dissipate less. Thus, the total density profile, inferred
e.g. from gravitational lensing measurements, provides reliable in-
formation about the dark matter density profile. In fact, lensing is
particularly interesting in the determination of the observed density
profile of galaxy clusters, because it does not require assumptions
of hydrostatic equilibrium, as in dynamical methods.

In this paper we use the stacked surface density profile from
four massive galaxy clusters with similar mass and redshift to test
both phenomenological and theoretical models for their density
profiles. We only consider spherically symmetrical models. In §2
we briefly describe the cluster data used in this work. In §3 and §4
we present the phenomenological and theoretically motivated mod-
els tested. In §5 we present the halo model, which allows us to in-
clude large-scale structure effects on the observed profiles. Our re-
sults are presented in §6 and discussed in §7. When necessary, we
use the values of WMAP 7-year data release (Jarosik et al. 2011)
for the cosmological parameters.

2 DATA

We use the data of Umetsu et al. (2011), who combined weak-
lensing shear, magnification, and strong-lensing measurements of
four high-mass (M ! 1015M!) galaxy clusters (A1689, A1703,
A370, C10024+17) with redshifts around z≈ 0.3. The strong lens-
ing data was based on Hubble Space Telescope observations for
the central regions of those clusters (typically, R " 150 kpc/h),
and combined with independent weak-lensing data obtained by
Umetsu et al. (2011), extending to the outer regions (R " 3.5
Mpc/h) of the clusters. The surface density profiles of the four clus-
ters were stacked in order to reduce the cosmic noise and smooth

effects due to asphericity or presence of substructures. Hereafter
we assume that the radial shape of the mean density profile ob-
tained in this way is representative of dark matter halos in equi-
librium (Gao et al. 2012). For more observational information on
individual clusters, see Table 1 of Umetsu et al. (2011).

3 PHENOMENOLOGICALMODELS

A number of phenomenological models for density profiles of
dark matter halos and galaxy clusters have been proposed as
parametrized functions that fit reasonably well simulations and ob-
servations, with no regards to fundamental principles or theoretical
motivation. Below we make a brief description of the models that
we test.

3.1 NFW profile

The NFW profile was proposed by Navarro et al. (1996, 1997) in
order to fit the data of N-body cold dark matter (CDM) simulations,
after stacking many halos. It is given by

ρ(r) =
ρs

(r/rs) (1+ r/rs)2 , (2)

where ρs and rs are scale parameters. It often represents the best fit
model to observed data of galaxy clusters; this would also be the
case in this work if we did not include large-scale structure effects
in the analysis, as discussed below. The NFW profile has an ana-
lytical expression for the surface density profile Σ(R) (Bartelmann
1996), given by

Σ(R) = 2ρsrsF (R/rs) , (3)

where

F (X)=
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The NFW profile has a non-physical divergence at the origin, vary-
ing as r−1 in the inner regions. In its outer parts it varies as r−3,
implying another unrealistic property of an infinite total mass. One
way to circumvent the latter divergence is to truncate the profile at
a maximum radius, e.g. the virial radius.

A common generalization of the NFW profile (Zhao 1996;
Jing & Suto 2000) is obtained by setting the inner slope as a free
parameter α (for NFW, α=−1):

ρ(r) =
ρs

(r/rs)α (1+ r/rs)3−α , (4)

Following Umetsu et al. (2011) we will refer to this generalized
model as gNFW.

3.2 Sérsic profile

The Sérsic profile (see Sérsic 1963) was proposed in order to fit
the light distribution in spheroidal galaxies and has been also used
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to fit simulated data (Merritt et al. 2006). It is defined as a projected
surface density profile that has the form

Σ(R) = Σe exp
{

−bn
[

(R/Re)1/n−1
]}

, (5)

where Σe is the surface brightness at the effective radius Re and bn
is a function of n obtained by imposing that the luminosity inside
the effective radius is half the total luminosity. The relation between
bn and n is well approximated by bn ≈ 2n−0.324 (Ciotti 1991).

3.3 Einasto profile

The Einasto profile is a three-dimensional version of the Sérsic pro-
file (see Einasto 1965). It was proposed to describe the surface
brightness of elliptical galaxies. Recently it has also been used to
fit data from N-body CDM simulations, giving results comparable
to the NFW profile in some cases (Navarro et al. 2004; Merritt et al.
2005, 2006; Gao et al. 2008; Navarro et al. 2010). It is given by

ρ(r) = ρs exp
{

−2n
[

(r/r−2)
1/n−1

]}

, (6)

where ρs and r−2 are scale parameters. Lapi & Cavaliere (2010)
discuss a possible dynamical basis that could generate a profile
for which Einasto is a good approximation. In their Appendix A,
Mamon et al. (2010) have obtained a polynomial approximation to
better than 0.8% for the expression of the surface density, in the
intervals 3.5 # n# 6.5 and −2 # log10 (R/r−2)# 2.

3.4 Stadel profile

This profile was proposed to fit simulated data of galaxy-size dark
matter halos (see Stadel et al. 2009). It has the form

ρ(r) = ρ0 exp
{

−λ [ln(1+ r/rs)]2
}

, (7)

which resembles somewhat the Einasto profile and similarly gives
a finite density ρ0 at the origin. It can also be written as

ρ(r) =
ρ0

(1+ r/rs)λ ln(1+r/rs)
, (8)

and in this way it resembles power-law profiles. Noticing that the
shape parameter assumed almost the same value λ= 0.1 in different
simulations, Stadel et al. (2009) proposed to fix this parameter and
promote the model into a two-parameter profile. Here we let λ be a
free parameter and obtain a different value for it.

3.5 Hernquist profile

The Hernquist (1990) profile has the functional form

ρ(r) =
ρs

(r/rs)(1+ r/rs)3 , (9)

and differs from the NFW profile only in the outer parts, where it
varies as r−4. It was proposed, not as a fit to simulated or observed
data, but because it provides analytical expressions for dynamical
quantities, such as the gravitational potential, the energy distribu-
tion function, the density of states as well as the surface density,
which is given by

Σ(R) = 2ρsrsG(R/rs) , (10)

where

G(X) =
[(

2+X2)H (X)−3
]

2
(

1−X2)2 , (11)

and

H (X) =























1
√

1−X2
sech−1X , (X < 1)

1 , (X = 1)
1

√
X2 −1

sec−1X , (X > 1)

which implies that lim
X→1

G(X) = 2/15.
After addition of the 2-halo term explained in §5, the phe-

nomenological profiles described above are shown in Fig. 2, along
with the galaxy cluster stacked data from Umetsu et al. (2011).

4 THEORETICAL MODELS

Some of the theoretical models we investigate here are based on
the hypothesis of hydrostatic equilibrium between the gravitational
attraction and the pressure P(r) due to velocity dispersion in an
isotropic distribution:

dP
dr

=−ρ(r)
GM (r)
r2 , (12)

where ρ(r) is the mass density profile and M (r) is the total mass
inside radius r:

M (r) =
∫ r

0
dr′4πr′2ρ

(

r′
)

. (13)

Combining Eqs. (12) and (13) we have

d
dr

[

r2

ρ(r)
dP
dr

]

=−4πGr2ρ(r) . (14)

Choosing the equation of state P(ρ) determines the model,
and Eq. (14) can then be (numerically) solved to give the density
profile ρ(r).

4.1 (non-singular) Isothermal Sphere

The (non-singular) Isothermal Sphere is based on the equation of
state of an ideal gas P= nkBT , which locally becomes

P(r) =
kBT
m

ρ(r) , (15)

where m is the mass of the constituent particle. Using Eq. (15) in
Eq. (14) we have

rρ
d2ρ
dr2 − r

(

dρ
dr

)2
+2ρdρ

dr
+4πGλrρ3 = 0, (16)

where λ=m/kBT . This represents a particular case of the so-called
Lane-Emden equation. The (non-singular) Isothermal Sphere has
null slope at the origin and oscillates around the Singular Isother-
mal Sphere

(

ρ ∝ r−2) for large radii (Binney & Tremaine 2008).
Thus we solve Eq. (16) numerically imposing the boundary condi-
tions dρ/dr(0) = 0 and ρ(0) = ρ0, where ρ0 is a free parameter.

4.2 Kang & He models

The entropy per unit mass sr of an ideal gas, written as a function
of pressure pr and density profile ρ(r) is

sr = ln
(

p3/2
r ρ−5/2

)

, (17)
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and the Jeans equation is written as

dpr
dr

+2β pr
r

=−ρ
GM (r)

r
, (18)

where β= 1−
(

σ2
θ+σ2

φ

)

/
(

2σ2
r
)

is the velocity anisotropy param-
eter, written in terms of the velocity dispersions in the three spher-
ical coordinates. Kang & He (2011b) define a generalized pressure
P as

dP
dr

=
dpr
dr

+2β pr
r

(19)

and a phenomenological entropy as

s= ln
(

P3/2ρ−5/2
)

, (20)

such that the resulting system of equations is independent of β. This
effectively reduces Eq. (18) to Eq. (12). Using the variational prin-
ciple, the entropy per unit mass, Eq. (20), is then used to maximize
the total entropy S

S=
∫ ∞

0
4πr2ρs dr =

∫ ∞

0
4πr2ρ ln

(

P3/2ρ−5/2
)

dr , (21)

subject to the constraints of conservation of total energy and the
virial theorem. This procedure results in the following equation of
state

ρ= λP+µPγ , (22)

where γ = 3/5. We will refer to this model as “Kang & He”. The
constant λ is a Lagrange multiplier and µ is an integration constant,
both related to total mass and energy of the system. This equa-
tion of state reduces to that of an ideal gas Eq. (15) for µ= 0 and
λ=m/kBT . Following a similar but different approach, Kang & He
(2011a) obtain the same equation, but now with γ = 4/5. We will
call this last model “Kang & He 2”.

In order to use the equation of state Eq. (22) in Eq. (14), we
need to solve for P(ρ) in Eq. (22), so as to turn Eq. (14) into an
equation for ρ(r). This is not possible for general values of γ, so
after differentiating Eq. (22), Kang & He (2011b) propose approx-
imating P≈ ρ/λ, obtaining

dP
dr

=
1

λ+ γµ(λ/ρ)1−γ
dρ
dr

. (23)

Inserting Eq. (23) into Eq. (14), one obtains a second order differ-
ential equation for ρ(r), which can be numerically solved imposing
again dρ/dr(0) = 0 and ρ(0) = ρ0.

It is possible to follow a different approach, inserting ρ(r)
from Eq. (22) into Eq. (14), thus obtaining an equation for P(r).
After solving this equation numerically for P(r), ρ(r) can be ob-
tained from Eq. (22). This approach proves to give slightly better
results (although similar to the original Kang & He’s ) in the fitting
procedure, so that is what we used.

4.3 DARKexp

The DARKexp model (Hjorth & Williams 2010;
Williams & Hjorth 2010) is significantly different from the
previous models, because it does not take into account a possi-
ble equation of state to be used in the hydrostatic equilibrium,
Eq. (14). Instead, it deals with statistical mechanical arguments
to (indirectly) derive the distribution function and determine the
density profile.

For the discussion below, let us define a dimensionless density
ρ̃= ρ/ρ0 and a dimensionless distance x= r/a, where ρ0 and a are

scale parameters. The particle’s energy per unit mass E =Φ+v2/2,
whereΦ is the gravitational potential and v the particle velocity, can
be written as

ε= ϕ−
1
2
v2

vg2 , (24)

where vg=
√

a2ρ0G and we defined the positive and dimensionless
quantities ε=−E/vg2 and ϕ=−Φ/vg2.

The DARKexp model is based on two main assumptions.
First, because dark matter in halos is collisionless, it is argued that,
after the system reaches an equilibrium, each particle retains its in-
dividual energy, and thus a Boltzmann-like function must be used,
not in the distribution function f (ε) (average number of particles
per state of energy ε), but in the number of particles per unit en-
ergy N (ε)∝ f (ε)g(ε), where g(ε) is the density of states (number
of states per unit energy); see Binney (1982). The other feature of
the model is that it properly considers the possibility of low occu-
pation numbers, which results in a cutoff similar to that of King
models (King 1966; Madsen 1996). These two features imply that
the number of particles per unit energy ε must be given by

N (ε) = eϕ0−ε−1 , (25)

where ϕ0 is the shape parameter representing the central potential.
In models that predict the distribution function f (ε), the den-

sity profile is obtained after integrating over all possible velocities
(see Binney & Tremaine 2008)

ρ(x) = 4π
∫
dvv2 ρ0

vg3 f (ε) , (26)

where f (ε) is considered to be dimensionless. The equation above
also assumes that the velocities are isotropic, contrary to what is
seen in simulated ΛCDM halos (e. g. Lemze et al. 2012) and in ob-
servational analysis (e. g. Biviano & Katgert 2004). With the help
of Eq. (24), we have

ρ̃(x) = 4π
∫ ϕ(x)

0
dε f (ε)

√

2 [ϕ(x)− ε] . (27)

The density profile is finally obtained by solving Poisson’s equation

∇2ϕ(x) =−4πρ̃ (x) . (28)

However, if the model predicts N (ε), as in the case of the
DARKexp, we need to use an iterative approach. Here we follow
the procedure of Binney (1982). We start by guessing an initial esti-
mate of the density profile ρ̃(x) and calculate the resulting potential
as

ϕ(x) = 4π
[

1
x

∫ x

0
dx′x′2ρ̃

(

x′
)

+
∫ ∞

x
dx′x′ρ̃

(

x′
)

]

. (29)

Next, we compute the density of states as

g(E) = (4π)2
∫
drr2

∫
dvv2δ

(

1
2
v2 +Φ−E

)

(30)

which in terms of the dimensionless quantities results in

g(ε) = 16π2a3vg
∫ xmax(ε)

0
dxx2√2 [ϕ(x)− ε] , (31)

where xmax is such that ϕ(xmax) = ε. We then use the N (ε) defined
in the model, Eq. (25), to compute the dimensionless distribution
function

f (ε) = a3vg
N (ε)
g(ε)

. (32)
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Finally, we use Eq. (27) to obtain a new ρ̃ (x) and iterate the pro-
cess. We find that after about 20 iterations the model converges to
a density profile independent of the initial guess.

Fig. 3 shows the theoretical models described above, after
adding to them the 2-halo term explained in §5, along with the
galaxy cluster stacked data from Umetsu et al. (2011).

5 HALO MODEL

When considering cluster profiles that extend to sufficiently large
radii, large-scale corrections must be taken into account. For dark
matter halos of a given mass M and redshift z, the halo-mass corre-
lation function, defined as ξhm(r) = 〈δh(x)δm(x+r)〉, represents
the excess density of matter at a distance r = |r| from the halo
center, i.e. it is a measure of the average observed halo profile
〈ρobs(r)〉:

1+ξhm(r) =
〈ρobs(r)〉

ρ̄m
. (33)

The halo model (see Cooray & Sheth 2002) allows us to esti-
mate cosmological correlations from the properties of dark matter
halos, seen as the building blocks of cosmic structure. In this con-
text the halo-mass correlation function is given by a sum of two
contributions (Hayashi & White 2008; Schmidt et al. 2009)

ξhm(r) =
ρ1h(r)
ρ̄m

+bLh (M)ξLm(r) . (34)

Here ρ1h(r) represents the 1-halo contribution or true halo
profile from matter within the halo itself; this is the term described
by all models presented in §3 and §4. The second term on the right-
hand side of Eq. (34) represents the 2-halo contribution from the
large-scale structure of the Universe, given by the linear matter cor-
relation function ξLm(r) and the linear halo bias bLh(M).

Projected lensing measurements are sensitive to the average
observed overdensity δρobs(r) = 〈ρobs(r)〉− ρ̄m. Therefore, com-
bining Eqs. (33) and (34) we find

δρobs(r) = ρ1h(r)+ρ2h(r) , (35)

where the 2-halo term is given by

ρ2h(r) = ρ̄mbLh(M)ξLm(r) . (36)

The observed surface density profile Σobs(R) at projected dis-
tance R is obtained using Eq. (1):

Σobs(R) =
∫
dx‖ δρobs(x‖,R) = Σ1h(R)+Σ2h(R) , (37)

where Σ1h(R) is defined from ρ1h(r), and similarly for Σ2h(R). We
estimate bLh(M) from the fit to simulations of Tinker et al. (2010)
and ξLm(r) as the Fourier transform of the linear matter power spec-
trum PLm(k) obtained from CAMB (Lewis et al. 2000),

ξLm(r) =
1

2π2

∫
dk k2PLm(k)

sin(kr)
kr

. (38)

Finally we assume a flat Universe with cosmological param-
eters set by the best fit values of WMAP 7-year data release
(Jarosik et al. 2011).

In Fig. 1 we illustrate the effect of the 2-halo term for mas-
sive halos. We assume a 1-halo profile given by the NFW model
from §3.1 and consider halos with average virial mass Mvir =
1.56×1015M!/h and redshift z = 0.32. For this redshift and cos-
mology, the virial overdensity relative to the mean matter density
is Δ≈ 263 (Bryan & Norman 1998), and the Tinker fitting formula

R(Mpc/h)
-110 1

)2
/M

pc
 (h

 M
Σ

1410

1510

1610
NFW

2-halo term

NFW + 2-halo term

Figure 1. NFW profile (dotted), 2-halo term correction (dashed) and the
sum of both (solid) representing the final best fit are shown, along with data
points from Umetsu et al. (2011).

gives bL(M263,z) = 10.98. The NFW model underestimates the ob-
served profile for r > 1 Mpc/h, where the 2-halo term becomes in-
creasingly important. We add the computed Σ2h to the 1-halo mod-
els of §3 and §4 before fitting them to data. Since the 2-halo contri-
bution depends only on the fixed cosmology, this does not introduce
any extra parameter.

6 RESULTS

We fit the various models to the data with the help of the Minuit
package developed by James & Roos (1975). We compute the χ2,
i.e. the minimum value of Q, given by

Q= Δi V−1
i j Δ j , (39)

where

Δi = ΣT (Ri)−ΣD (Ri) , (40)

ΣT (Ri) is the surface density from Eq. (1) for a given model
evaluated at radius Ri, ΣD (Ri) is the surface mass density from
Umetsu et al. (2011) lensing analysis of the data, and Vi j is the er-
ror covariance matrix between data points i and j. The data consist
of 15 correlated points.

Hereafter, the metric we use to compare the various models is
the χ2 per degree of freedom, or reduced χ2, defined as

χ2
ν =

χ2

ν
(41)

where ν = 15−Np is the number of degrees of freedom given 15
data points and Np parameters.

We note that a more rigorous statistical analysis would involve
the correct calculation of the integral of the χ2 distribution. Such
detailed analysis is beyond the scope of this work, since we are
mainly interested in investigating what class of models provide a
reasonable description of the data, as inferred from a simple rank-
ing criterion. We believe though that our conclusions would remain
unchanged if a more detailed statistical analysis was employed.

Fig. 2 shows the data points obtained by Umetsu et al. (2011)
and the best fits for all the phenomenological models discussed
above, after the addition of the 2-halo term represented by the or-
ange dashed line in Fig. 1.
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Figure 2. Best fit curves and χ2
ν for the phenomenological models along

with data points from Umetsu et al. (2011). The bottom panel shows the
relative difference between the best fits of each model and the Stadel profile.

Profile Np χ2
ν Shape parameter

Stadel 3 0.465 λ= 0.25±0.04

gNFW 3 0.471 α= 0.74±0.44

Einasto 3 0.475 n= 3.80±0.61

Hernquist 2 0.482 -

NFW 2 0.484 -

Sérsic 3 0.504 n= 2.42±0.34

Table 1. Fit results for the phenomenological models. The column Np in-
dicates the total number of model parameters, χ2

ν shows the reduced χ2 de-
fined in Eq. (41) and the last column shows the best estimate for the shape
parameter of the model.

The Stadel profile, with 3 parameters and χ2
ν = 0.465, rep-

resents the best fit, with best value of the shape parameter λ =
0.25 ± 0.04. It is followed by the generalized version of NFW,
gNFW (3 parameters), with χ2

ν = 0.471 and α = 0.74 ± 0.44.
Next is the Einasto profile (3 parameters), with χ2

ν = 0.475 and
n= 3.80±0.61. Then we have the Hernquist model (2 scale param-
eters) with χ2

ν = 0.482, followed by the NFW model (2 parameters)
with χ2

ν= 0.484. Finally, for the Sérsic profile we obtain χ2
ν= 0.504

and n= 2.42±0.34. These results are summarized in Table 1.
Fig. 3 shows the fits for the theoretical models. The best fit

was obtained for the DARKexp model with χ2
ν = 0.468. In order to

generate this model, we did 25 iterations of the procedure described
in § 4.3, with 105 logarithmic bins in r. The best fit value for the
shape parameter was ϕ0 = 3.00±0.48. The other three models, the
Isothermal Sphere and the 2 variants predicted by Kang & He, were
generated in 106 logarithmic bins in r.

Among these last three models, the best fit is for the “Kang &
He” model, with γ = 3/5, for which χ2

ν = 2.350 with λ̃ = λc2 =

(5.44±0.10)× 104 and µ̃= µ
(

c3/ρ0
)2/5

= 13.85± 0.03 for the
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Figure 3. Best fit curves and χ2
ν for the theoretical models, along with data

points from Umetsu et al. (2011). The bottom panel shows the relative dif-
ference between the best fits of each model and DARKexp.

Profile Np χ2
ν Shape parameter

DARKexp 3 0.468 ϕ0 = 3.00±0.48

KH 4 2.350 λ̃ = (5.44±0.10)×104

µ̃= 13.85±0.03

Isoth. Sph. 3 2.603 λ̃ = (5.76±0.16)×104

KH2 4 2.670 λ̃ = (5.29±0.38)×104

µ̃= 346±268

Table 2. Fit results for the theoretical models. Columns defined as in Ta-
ble 1.

shape parameters, where c is the speed of light in vacuum and ρ0
is the scale parameter for the density. The Isothermal Sphere gives
χ2
ν = 2.603 and λ̃ = (5.76±0.16)× 104 for the shape parameter,

followed by “Kang & He 2”, with γ = 4/5, for which χ2
ν = 2.670

with λ̃ = (5.29±0.38)× 104 and µ̃= µ
(

c8/ρ0
)1/5

= 346± 268.
These results are summarized in Table 2.

6.1 Neglecting the 2-halo term

We have also considered the results of fitting the models without
adding the 2-halo term. These fits are summarized in Figs. 4 and 5
and Tables 3 and 4 for the phenomenological and theoretical mod-
els respectively.

In this scenario, the NFW profile produces the overall best
fit, with χ2

ν = 0.449 and the gNFW profile results in χ2
ν = 0.474,

with the best fit value α = 0.89± 0.37. These values are identical
to those obtained by Umetsu et al. (2011), who did not include the
2-halo term in their analysis, and provides a consistency check of
our numerical scheme.

The third best fit is the Stadel profile with χ2
ν = 0.522 and

λ= 0.223±0.040, followed by the Einasto profile with χ2
ν = 0.602

and n= 4.31±0.75. Next, the Sérsic profile resulted in χ2
ν = 0.663

c© 2012 RAS, MNRAS 000, 1–9
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Neglecting 2-halo term

Figure 4. Best fit curves and χ2
ν for the phenomenological models stud-

ied, neglecting the 2-halo term, along with data points from Umetsu et al.
(2011). The bottom panel shows the relative difference between the best fits
of each model and NFW.

Profile Np χ2
ν Shape parameter

NFW 2 0.449 -

gNFW 3 0.474 α= 0.89±0.37

Stadel 3 0.522 λ= 0.223±0.04

Einasto 3 0.602 n= 4.31±0.75

Sérsic 3 0.663 n= 2.69±0.41

Hernquist 2 0.706 -

Table 3. Fit results for the phenomenological models neglecting the 2-halo
term. Columns defined as in Table 1.

with n= 2.69±0.41. Finally, for the Hernquist profile, with 2 scale
parameters like NFW, we obtained χ2

ν = 0.706. These results are
summarized in Table 3.

Fig. 5 shows the fits for the theoretical models when we ne-
glect the 2-halo term. The best fit comes from the DARKexp model,
for which χ2

ν = 0.598. The best fit value for the shape parameter
was ϕ0 = 3.24±0.48.

Among the Isothermal Sphere and its variants, the best fit is
for the former, which provides χ2

ν = 2.195 with λ̃=(5.62±0.15)×
104. For the "Kang & He" model, with γ= 3/5, we find χ2

ν = 2.265
with λ̃ = (5.477±0.003)×104 and µ̃= 6.1±0.6. Finally, for the
“Kang & He 2” model with γ = 4/5, we obtain χ2

ν = 2.385 with
λ̃= (5.52±0.36)×104 and µ̃= 75±237. The results of the fits of
these theoretical models are summarized in Table 4.

As can be seen in Figs. 4 and 5, almost all the best fit density
profiles remain below the data points in the outer regions. The ex-
ceptions are the Isothermal Sphere variants, whose fits nonetheless
fail badly. This trend shows the need for including the 2-halo term
in the analysis.
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Figure 5. Best fit curves and χ2
ν for the theoretical models studied, neglect-

ing the 2-halo term, along with data points from Umetsu et al. (2011). The
bottom panel shows the relative difference between the best fits of each
model and DARKexp model.

Profile Np χ2
ν Shape parameter

DARKexp 3 0.598 ϕ0 = 3.24±0.48

Isoth. Sph. 3 2.195 λ̃ = (5.62±0.15)×104

KH 4 2.265 λ̃= (5.477±0.003)×104

µ̃= 6.1±0.6

KH2 4 2.385 λ̃ = (5.52±0.36)×104

µ̃= 75±237

Table 4. Fit results for the theoretical models neglecting the 2-halo term.
Columns defined as in Table 1.

7 DISCUSSION

We have used observed data for the surface mass density of 4 clus-
ters of similar mass and redshift to study various models for cluster
density profiles. Under the assumption that the stacked data pro-
vide a fair representation of the mean radial density profile of dark
matter halos, we can include effects of large-scale structure at large
radii and investigate how appropriately each model describes the
average properties of clusters of this mass and redshift, and directly
compare models against each other.

For the phenomenological profiles, we have found that the
Stadel model provides the best fit, followed by gNFW and Einasto.
Nonetheless, the performance of all these profiles, including the
standard NFW, is very similar, as is often the case in numerical sim-
ulations (Gao et al. 2008; Merritt et al. 2005; Navarro et al. 2010).

For the theoretically motivated profiles, both the Isothermal
Sphere and the Kang & He models give poor results compared to
the phenomenological models. This can be attributed in part to the
fact that both models produce cored density profiles, while the sim-
ulations and the data used here favor cuspy profiles, or cored just in
the innermost, inaccessible region, like for the Einasto and Stadel

c© 2012 RAS, MNRAS 000, 1–9
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Figure 6. Best fit curves for Stadel, DARKexp, Einasto and NFW models,
along with data points from Umetsu et al. (2011). The bottom panel shows
differences relative to the Stadel profile.

profiles. Moreover, the outer region is not well described by these
models, which behave like r−2, while the data favor a behavior
closer to r−3.

The best theoretical fit to data is obtained with the DARKexp
model. This model provides an excellent fit, even compared with
the performance of the phenomenological profiles. This is interest-
ing, since this model has a dynamical basis justification. We did
not investigate the role of the velocity anisotropy in this model.
However, Williams et al. (2010) have compared the model to sim-
ulated data and shown that the typical anisotropy profiles do not
alter significantly the predicted density profile and that the DARK-
exp model is a better match to the Einasto profile than to the NFW
profile. This is in agreement with our findings as seen in Fig. 6,
which shows our best fits for the Stadel, DARKexp, Einasto and
NFW profiles.

It is interesting to note that the Einasto profile with n ≈ 6
generally fits ΛCDM simulations better than NFW, as has been
noticed by Navarro et al. (2004). Moreover Mamon et al. (2010)
found n≈ 5 for dark matter halos of hydrodynamical cosmological
simulations, while in this work we have found n ≈ 3.8. Finally, by
fitting rotation curves of spiral galaxies, Chemin et al. (2011) have
found best fits for the Einasto profile with n as low or lower than
unity. This sequence may suggest a correlation between the param-
eter n and the importance of the gas component in the dynamics of
the system.

Concluding, we find that, while the observed data is best fit by
phenomenological models, there is a similarly good fit by the theo-
retical DARKexp model. We find that including the 2-halo term in
the analysis is important and the best-fit ranking somewhat change
if it is neglected. Should the agreement with observational data hold
for clusters observed at different ranges of mass and redshift, one
could argue that theoretical models such as DARKexp may provide
a dynamical basis for the observed dark matter density profiles.
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