Chapter 6

Review

Let us review what we have seen so far before we proceed.

6.1 Electromagnetism

Maxwell’s equations:

V-E
V-B
V xE

V x B

i (Gauss Law)

€0
0 (Nonexistence of Magnetic Monopoles)

0B
——— (Faraday induction Law)

ot

) OE
Hoj + Hoeo - (Ampere Law)

naturally imply charge conservation (divergence of Ampere’s Law):

ap

6t+V-J:O

We may define electromagnetic potentials

which under gauge transformations

produce the same electromagnetic fields

O0A
b= Ve gy
B = VxA

af

/ — [ ——
A" = A+Vf

E = E

B = B
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The Lorenz gauge

V- A+ uoeo% =0 (Lorenz Gauge) (6.12)

is particularly useful for electromagnetic waves. In fact, inserting the potentials in the Maxwell
Egs. and imposing the Lorenz gauge, we obtain

1 0% p
D¢ = —555 +Vip=—= 1
¢ 29 + V<o - (6.13)
1 02A
A = — 2A = —upi 14
62 (%2 +V Ho) (6 )

i.e., the potentials propagate according to the classical non-homogenous wave equation with con-
stant speed equal to the speed of light ¢? = 1/pgeg. Unification: E&M <+ Optics.
Finally, given the E&M fields, corresponding E&M forces F act on particles as:

F=¢(E+v xB) (6.15)

6.2 Special Relativity

Postulate 1: The laws of physics are the same in all inertial frames.
Postulate 2: The speed of light is the same in all inertial frames.

Postulate 2 follows from postulate 1, since E&M is a set of physical laws.

6.2.1 Coordinates and Metric

Contravariant coordinates

ot = (20,21, 2%, 2%) = (ct, z,9, 2) (6.16)
Line element ds
ds? = nda”dz” (6.17)
Metric 7,
-1 0 0 0
o= o o1 (6.18)
0 0 01
Covariant coordinates x,,
Ty = nur’ = (—ct,x,y, 2) (6.19)
Similarly,
at =ntx,, (6.20)

where n* inverse metric. Flat space: n#" = 1,,,.
. . . .. 3
Einstein sum convention: crossed repeated indices are summed over, e.g. "z, =37 _, ",
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6.2.2 Invariance of the Line Element:

Under 3d spatial rotations, coordinates transform as

w
ot = (?)ZV = A 2 (6.21)
with
1 0 0 0
0 cosf@ sinf 0
u p—

A%, 0 —sinf cosf@ O (6.22)

0 0 0 1

such that the 3d spatial line element
P=2+y"+22 =)+ @)+ () =1" (6.23)

is invariant.
Similary, under a boost with velocity v in the x-direction, the Lorentz transformations with

7y =By 00
By v 00
[T
AR, 0 01 0 (6.24)
0 0 0 1
where
B = Y<1 (6.25)
c
1
= —>1 6.26
leave the 4-d line element s = —c?t? + 22 + y? + 22 invariant.
6.2.3 Time Dilation and Space Contraction
As a result, we have time dilation:
At = At/y (6.27)
and space contraction
Ax' = yAzx (6.28)
6.2.4 Tensors
Tensors defined according to their Lorentz transformations:
T = A N 5T (6.29)

scalar: tensor of rank 0 (invariant), vector: rank 1, matrix: rank 2, etc...
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Example: 4-velocity U*:

dxt dz® dx’ cdt  da
P = = JEE = — — — .
U= < dr’ d7> (dT T > (e, ) =7(ev) (6.30)

4-momentum (massive particles):
E . .
Pt =mU" = (yme,ymv) = | —,p Momentum (massive particles) (6.31)
c

Classical limit (v < ¢ we have y = (1 — 2)"1/2 = 1 4+ 82/2 + O(B%):
1
E = ymc =md + imv2 +0(pY (6.32)
p = ymvamv+O0(3?) (6.33)

More generally, for massive and massless particles:

daxt E
Pt = % = (, p) Momentum (massive and massless particles) (6.34)
c

where A\ parametrizes the trajectory. Massive particles: A\ = 7/m. Massless particles: 7 = m = 0,
so choose something else or replace A — ¢. Finally

E 2
PtP, = — (c) +p? = —m?c? — E? = (pc)? + (mc?)? (6.35)

6.2.5 Doppler Effect

Applying the Lorentz transformations to P* = (E/c,p) for a photon, we have

1-5
E = - " F .
! 5 B (6.36)
and since E., = hv:
1-p
= 6.37
v 155 v ( )
or
1
N = 1+g A Doppler Redshift (6.38)

The redshift z is defined as

AN X=X 148 v
s= =T = La I~ 1= - (6.39)
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6.2.6 Covariant Formulation

185

Finally, one can show that the electromagnetic equations can be written in terms of tensors in a

covariant form. Defining:

o= (epj)
A% = (¢/c,A)
o oA 0AF
Or, Oz,
f“ = qFWUu
we have charge conservation:
agH
oxr
Wave equation:
OA% = _:u()ja )
Gauge transformation:
A/a — Aa + af
O0xq
Lorenz gauge:
0A“
=0
0x®
Maxwell’s equations:
OFH "
(9:6” - :LLOJ
0F,, 0Fy, n 0F,s _ 0
0x° oxV oxH
and Lorentz force:
1 =P U,
6.2.7 Energy-Momentum Tensor
The energy-momentum tensor 7" is generally defined as
TH = "flux of P* across surface of constant ¥” = P* per surface L to z".

e.g.
T9: density of P° = E : energy density
T%: flux of P! in the ' direction : force f? per area L to z’ = pressure

For a perfect fluid:
T = (p+ P)UUP + Py?

(6.40)
(6.41)
(6.42)
(6.43)

6.43

(6.44)

(6.45)
(6.46)
(6.47)

(6.48)

(6.49)

(6.50)

(6.51)
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6.3 General Relativity

6.3.1 Equivalence Principle

Locally inertial frames: freely-falling frames in small enough regions for which special relativity
holds locally.

Weak Equivalence Principle (WEP): ”In small enough regions of space-time, the motion
of freely-falling particles is the same in a uniform gravitational field and in a uniformly accelerated
frame, i.e. the laws of Mechanics take the same form as in an unaccelerated frame in the absence
of gravitation. As a result, at every point of space-time in an arbitrary gravitational field, it is
possible to choose a ”locally inertial frame” such that in small enough regions the laws of Mechanics
reduce to those of special relativity.”

Strong Equivalence Principle (SEP): Replace laws of Mechanics by laws of Physics above.

6.3.2 Geodesics

K’ frame: freely-falling coordinates £,
K frame: coordinates z.

e

0 6.52
dr? (6.52)
Change £ — -
>z dxt dx”
L — =0 6.53
dr? t dr dr ( )
where the affine connection FZV
oxY 028
L= 927 076" (6.54)
me 9EB ar oz
Similarly, the metric tensor g,, in coordinates x*:
_ 9ev ogP
Guw = 5 g 108 (6.55)

6.3.3 Metric and Connection

Differentiating Eq. 1.163, changing indices and adding:
o _ 97 (&cmu Igru 391»\) (6.56)

pA = 9

ox*  Oxv Ozt
One can show that in the Newtonian limit with
Jo = MNap+ hag(x), with hag(il:) <K Nag (6.57)

the geodesics equation gives

x A

— = —Vhg =-VV¥ 6.58

ez~ 2 (6.58)
and with appropriate boundary conditions

goo = —(1+2V¥) (6.59)
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6.3.4 Time Dilation and Gravitational Redshift

Therefore, the ratio of times between 1 and 2 is

dts  (goo(wa)\ /?
dt; (900(931)> (0:00)

i.e. the ratio of frequencies v o« 1/dt will be

2 _ (900(x2)>1/2 (6.61)

21 goo(x1)

Weak field regime: goo = —(1 + 2¥) and

ov = 2~ 1. U(zg) — U(x1) (6.62)

141 141

6.3.5 General Covariance

Equivalence Principle: Gravitational effects can be obtained by writing equations for general
gravitational fields in a locally inertial frame where gravitational effects disappear (e.g. d¢2/dr? =
0) and transforming to the Laboratory coordinates to find the equation in the Lab. frame.

Principle of General Covariance: alternative to the Equivalence Principle (same physical content).

Principle of General Covariance: A physical equation holds in general gravitational fields (i.e.
in general relativity) if:
a) the equation holds in the absence of gravitation; i.e. it agrees with special relativity when
v = M and FaW =0.
b) the equation is generally covariant, i.e. it preserves its form under a general coordinate
transformation.
Volume Element
Define the determinant of the metric:
g = Det g, (6.63)
from which we can show that
Vg d'a' = /=g d*z (6.64)

i.e. \/—g d*z is an invariant (scalar) volume element.

6.3.6 Transformation of the Affine Connection

The affine connection was defined as

o A 82 a
r 07 0% (6.65)
B 0&> OxHOzv
and is not a tensor as it transforms as
A 2, I\
- 0zt Oz 0x° - dxP Ox° 0%a (6.66)
® OxP dz't Ox'v ox’v Ox'V OxPOx°
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6.3.7 Covariant Differentiation

For a contravariant vector:

and its derivative is

ov'’r Jx't OxP OV O%x'* OxP Vv
ox'N  Ox¥ O dxP  DxY P O’

Combining the transformations for F;\W and V" we have

2
[y o' Ozf ., ., Ot daf
Ak oz Oz r° 0xPOz° Ox'>

92alt dzP v
OxPoxzV g/

Adding the two equations above, the inhomogeneous terms cancel out and we get

ov'H
858/)‘

J oy 02 02 ( oV

~ Ozv 9z \ Oxr LV )

The combination in brackets is the covariant derivative, which transforms as a tensor:

oV .
VAVI =V = S5 TV

Extended to a general tensor:

TMU _ 8THU)\
Xp QP

+ Fg,/T”")\ + I‘g,,TWA — ipT“"K
The covariant derivative of the metric is zero, as can be checked, using Eq. 1.172:

0guw
Guvih = . Fgugpv —T%,9up =0

Importance of covariant derivatives for forming covariant equations:
1) They transform tensors into tensors, i.e. if A" is a tensor, so is VA*”.

(6.67)

(6.68)

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)

2) They reduce to ordinary derivatives in the absence of gravity (when g,, = 7,, and Ff‘w =0).

Therefore, the principle of general covariance allows us to apply the following algorithm to

obtain equations that are generally covariant and true in the presence of gravity:

a) Write the equation in special relativity (which holds in the absence of gravitation)

b) Replace 1, — g
c) Replace 0/0z" — V.



6.4. CURVATURE 189

6.4 Curvature

The connection is not a tensor, but the combination defined as the Riemann curvature tensor

\ ory, ol 0 A 0 oA .
R = < Dav + 0, — Thely,  (Riemann Tensor) (6.74)
is indeed a tensor:
ox'™ 9zt dx¥ Ox®
/ _ A
RTpJU T 91X O’ §xlo O Iz (675)
Tensors of lower rank by contracting the Riemann Tensor. Ricci tensor:
Ry = ¢ Ry = R® uev  (Ricci Tensor) (6.76)
Ricci scalar:
R=¢"Ry,, = R", (Ricci Scalar) (6.77)

It can also be shown that these are the only tensor and scalar that can be formed from the Riemann
tensor and the metric.
6.4.1 Commutation of Covariant Derivatives
Covariant derivative to a covariant vector V), twice in reverse order leads to
‘/MVW - VHW%V =—R’ ,uinU (678)

Therefore, if the Riemann tensor vanishes, covariant derivatives commute (as they should in flat
space). For a space-time with curvature, covariant derivatives do not commute.

One can show a number of properties of the Riemann Tensor, these lead to the Bianchi Identities,
which imply:

1
(R = 29" R}y = 0 (6.79)

6.5 Einstein Equations

Finally, imposing that the gravitational field equations must satisfy certain conditions, such as
being tensorial, containing at most 2 derivatives of the metric, being consistent with the Bianchi
identities, and reducing to Newtonian gravity in the appropriate limit, one finds that

G = 81GTy, (Einstein Equations) (6.80)
where
1
Gy = R" = g™ R (6.81)

This result can also be obtained by the Einstein-Hilbert action:

SEH.vac = / d*zv/—g R. (6.82)

if we require this action to be stationary under variations with respect to the metric g".
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©,0) (1,0) (0,0) (1.0) (0,0) (1,0)
I:I Physical Physical
C i Distance Distance
omoving _ ol
Distance a(ty) =a(ty)
=1 Comoving >a(ty)
Distance
=1
N
/
Time

Figure 6.1: Scale factor and expansion. Comoving coordinates do not change, but physical coordianates
expand with the scale factor a(t). (Dodelson).

6.6 Expansion of the Universe

Cosmological Principle: Assumption that the Universe is homogeneous (same at every point,
therefore symmetric under translations) and isotropic (same in all directions, therefore symmetric
under rotations).

Expanding universe: useful to define comoving coordinates x: do not change with the expansion,
parametrized in terms of the scale factor a(t) (see Fig.

Then physical distances r change with change such that

physical distance = a(t) X comoving distance. (6.83)

r(t) = a(t)x (6.84)

6.7 The Friedmann-Robertson-Walker metric

Generalizes Minkowski metric to include expansion on the spatial hypersurfaces, maintaining spatial
isotropy and homogeneity. Flat Universe it is given by

ds? = —dt? + a*(t)dI* (6.85)
where
di* = da® + dy? + d2? = dD? + D?do? (6.86)
and

da’® = db? + sin® fdp> (6.87)
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For universes with curvature k, generalize

di*> = R?[dD’+ f;(D)do?] (6.88)
o[ dD% 2 72
= R°|—"—5 + Dida (3d curved space) (6.89)
1- kD2
such that:
. inh(D), k= —1, Negative Curvature, Open Universe
D sin , , ,
Dy = fr(D) = M =< D, k=0, Zero Curvature, Flat Universe (6.90)
vk sin(D), k =+1, Positive Curvature, Closed Universe

6.8 The Friedmann Equations

(FRW metric + Einstein Equations) — Friedmann Equations:

N 2
8nG
<> - &G, (6.91)
a 3
a ArG
- = —— 3P 6.92
. o+ 3P) (692)
with curvature, generalizes to
N 2
a 8rG k
a _ - 6.93
() ",k (6.93)
a e
- = —— 3P 6.94
: = (p+3P) (6.94)
In a universe with no curvature, the density is called critical
3H?(t
Perit(t) = 87rc(:) (6.95)
Define the density parameter
pi(t)
Qi(t) = 6.96
i(t) = (6.96)

and the Friedmann equation becomes

2y H *(t) _ -2 -3 —4
E*(t) = PR [ a2+ Uy a™® +Qr a* + Q] (6.97)
0
where
Q= —k/HE =1— (Qm + % + Q) (6.98)
For a Universe with both matter and cosmological constant, we have
Q) V3 VO H,
a(t) = (Q) sinh?/? <32A0t) (Matter + Cosmological Constant) (6.99)
A

In the context of an expanding universe, the gravitational (dynamical) redshift is due to the
stretch of space-time itself and relates to the scale factor

1
1+2== (6.100)
a
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6.9 Cosmological Distances

6.9.1 Comoving Radial Distance

The comoving radial distance D can be obtained by considering the a radial path of photons, in
which we have da? = 0 (radial) and ds? = —dt? + a?(t)dD? = 0 (photons), so that D can be

expressed as
age 1 0
o oo [ [ [
t a(t) a aa z H(z)
? dz

= | (6.100)

where we used da = —a?dz and H(z) = a/a. Notice that D depends on the curvature only via the
Hubble parameter from the Friedmann’s equations. We may also define a physical radial distance
d, = a(t)D.

6.9.2 Comoving Horizon

The comoving horizon Dy is similar to D, but instead of integrating from z = 0 to a certain redshift
z, we integrate from z to z = oo, effectivelly finding the comoving size of the universe at z:

todt ? da © dz
D, - [ 4t _ ["da_ 6.101
" /oam /0 i~ ). TR (6.101)

We may also define a physical horizon dg = a(t)Dy.

6.9.3 Angular Diameter Distance

The comoving angular diameter distance D 4 is defined such that it gives an object’s comoving size
dl when it is multiplied by the object angular size da

dl = D sda (6.102)

From the metric definition, with dD = 0 we can see that it is given in terms of D by

sin(vkD) sinh(D), k= -1, Negative Curvature, Open Universe
Dy=fr(D)=———==< D, k=0, Zero Curvature, Flat Universe (6.103)
vk sin(D), k= +1, Positive Curvature, Closed Universe

or similarly, with k = —Hng:

(6.104)

sin[v/ =T Ho D] %, Qr >0, Negative Curvature, Open Universe
Dy = fi(D) = =< D, Qr =0, Zero Curvature, Flat Universe
V=S Ho sin[y/—Qy Ho D]

Y k0] Qr <0, Positive Curvature, Closed Universe

V=S HoD
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6.9.4 Luminosity Distance

The physical luminosity distance dj, is defined such that the Euclidean relation remains valid for
the comoving flux, i.e.

L

= 6.105
47rd2L ( )
and comparing with the previous equation, we conclude that
Dy da
dr = =2 =22 6.106
L a a? ( )
In the case of a flat universe we have
D d
d, = — = — Flat 6.107
p=2 =5 (Flay (6.107)

In any case, the relation a?dy, = dy4 is always true for FRW cosmologies, independent of curvature
and/or cosmology. It provides a consistency check for the homogeneity and isotropy of the Universe.
Finally, the comoving luminosity distance is

d _ Da _ fr(D)

D, = 2L _ 24 A 6.108
L= a? a? ( )
6.9.5 Comoving Volume
The comoving volume element in spherical coordinates is given by
: D3 (2)
dV(z) = (Dadf)(D4sinfdg)dD = dzd2, (6.108)

H(z)

6.9.6 Comoving versus Physical

physical and comoving version. The physical distance d is always obtained by multiplying the
comoving distance D by the scale factor a(¢). This holds also for the luminosity and angular-
diameter distances such that:

d, = a(t)D (6.109)
dH = a(t)DH (6.110)
da = a(t)Dy (6.111)
d, = a(t)Dg (6.112)
and the physical volume is
: 5. Da2) 3
AVphys = (dadf)(d 4 sinOdg)d(dy,) = a”(t) dzdQ) = a’(t)dV (6.113)
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6.10 Energy Evolution
The Bianchi identity says that the covariant derivative of the Einstein Tensor is zero:
V,.G" =0 (6.114)

which, through the Einstein equations, automatically imply that the Energy-Momentum tensor is
covariantly conseved:

v, T =0 (6.115)
the v = 0 equation implies (7% = g7 = p and T¥ = ¢**T" | = —0;./a* (=0, P) = 6;;P/a*):

VT = 9T+ T T 4 T, T
= T +TH\TY + T T2 + T, T + THT™
= T +TTY +THT™
(2 1
= OoT" + T}, +T9T%

a . 0;i P
= Oop+ 5@'5,0 + (dijaa) ( ;2 )

op a a
= —+3- 3-P=0 6.111
6t+ ap+ a ( )
or with P = wp:
dp

the general solution to this equation as

% = —3daédtp[1 + w(t)]
Cfop = =31+ w(t)]%
dlnp = =3[1+w(t)]dlna
Inp = -3 /[1 + w(a)]dIna + const.
pla) = p(1)exp [—3 /la Wda] (6.109)

In terms of redshift z, a = (1 + 2)7!, da = —(1 + 2)~2dz, so that da/a = —dz/(1 + z) and:

p(z) = p(0)exp {3 /0 ZW@] (6.110)
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Solutions for constant w

We can find solutions for cases when the universe content is dominated by different species with
constant w:

pe) = oo 31+ [ —p0 Bt oma ] @)
p(z) = p(O)(1 + 2304w (6.112)

6.11 Equilibrium Thermodynamics
distribution function f(x,p,t) of a species in phase space (x,p) and time ¢, defined such that
N = f(x,p,t)d3zd’p (6.113)

is the number of particles in phase space element d®zd>p.
In thermodynamical equilibrium, the distribution function is independent of position angular
direction, and given by

(6.114)

f(x,p,t) = f(p,t) = 1 { + Fermi-Dirac

e(E-m)/T 11 | — DBose-Einstein

where E = 1/p? + m?2, and both cases reduce to the Maxwell-Boltzmann distribution in the classical
limit (high temperatures and low densitites):

fp,t) x e~ (E-n)/T Classical (6.115)

number density, energy density and pressure, respectively:

3

n(x,t) = g/(;lﬂ_z)?gf(X?pvt) (6116)
3

pt) = g [ GBI P (6117)
3 2

P(x,t) = g/(;lﬂz;g:fE (x,p; ) (6.118)

The Boltzmann equation then implies

1
T x = (6.119)

6.12 Boltzmann Equations

df _O0f dwof dpdf  dpdf _ (9f
n n (6.120)
C

dt ot dt om dt dp ' dt 9p; \ ot



196

CHAPTER 6. REVIEW

In equilibrium, the distribution f(x,p,t) = fo(p,t) is either the BE or FD distribution, and the
collision term is zero (collisions/reactions in one direction cancelled by terms in opposite direction)

such that the collisionless Boltzmann is satisfied and

Ay _0f vt Ofy dvOfy i Of
dt ot dt Ox' dt Op  dt Opt
~ ~—

0 0
oo | dv o
ot dt Op

For photons
P?=g,P'P"=0—-P'=p
and the Geodesics equation gives

dp _

—_H
di P

For matter
P? = g,,P'P" = —m? = E? = p* + m?

and the Boltzmann equation leads to

6.13 Thermal History

The Boltzmann equation may be written as

o Pap T E

of . of _ 1 <6f>
at ) ¢

or, similarly, integrating over momentum

_gd(na®) dp 1 (0f
T _g/(27r)3E<8t>C

1+2<3+4

For a general process

we may evaluate the collision term and obtain for particle 1

3
e L I L
dt n3 n4 nl 'rL2

In chemical equilibrium the collision term is zero and we have the Saha equation

n3ny ning

nz())o)nELO) - ngO)ngo)

(6.121)

(6.122)

(6.123)

(6.124)

(6.125)

(6.126)

(6.127)

(6.128)

(6.129)

(6.130)

(6.131)
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More generally, we must solve the differential equation while only kinetic equilibrium holds.

We used this equation to study a number of processes in the early universe, namely

* Neutrino decoupling
* Freeze out of neutrons,
* Big Bang nucleosynthesis: formation of light element nuclei.

* Recombination of electrons and protons allowing the decoupling of electrons and photons

* Production of relic dark matter particles.

6.14 Linear Perturbations in the Universe

Gravitational dynamics — space-time perturbations in the metric and in the energy-momentum

tensor components:

dguv(x,t) = W(x,t),P(x,1)

5Tul/(xa t) : 5P(X, t)a Vi (Xv t)a 6P(X7 t)a HZ] (Xa t)

Fourier transform

ok, t) = / dBx ek X5(x,t)

and inverse

3
5(x,1) = / L T

(2m)3
lead to
5x) - (k)
S0) > ikio(i
V3H(x) — —k*(k)
/ B 5@ )W (@ —2) — S)W(K)

Metric perturbations (Conformal Newtonian Gauge):

ds® = gudatdr” = —(1 + 2W)dt? + a*(1 4 2®)dz?

U(z,t): Newtonian potential (time-time metric perturbation)
®(xz,t) curvature potential (space-space metric perturbation).

This metric leads, in Fourier space to the connection symbols:

Mg =W, T =TY=ik¥, TY=0s;a’ [H Y 2H(® — U) +

(6.132)
(6.133)

(6.134)

(6.135)

(6.140)

(6.141)
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b= 30, To=Tig=0dy (H+®),  Ti=i®0uk; — duki+ k) (6.142)
Ricci tensor:
a k2 . . .
Rop = —3— — —5 0 + 3H(¥ — 20) — 30 (6.143)
Roi = —2ik;(® — HU) (6.144)

Rij = 6;; [(ad +2a>H?)[1 + 2(® — U)] + aH (6<i> - \IJ) +a%d + k%} + Eikj (D + U) (6.145)
Ricci scalar:

R=6 (Z + H2> + a—’i(qj +20) — 6H(U — 48) + 66 — 120 (Z + H2> (6.146)

6.15 Perturbed Boltzmann Equations

FRW metric with perturbations in the Newtonian gauge — Bolzmann equation:

o 2 ~i 2
af _of  p'p OF OF |pTy  OWDPP 1 Iy
dt 0t aFEOxr OF|FE oz a E ot ) -
(6.146)
6.15.1 Photons
For photons, £ = p and
a _of pof _ of AR
dt ot + a Ozt pap Ht o+ or' a (6.147)

Perturbation in the distribution function around equilibrium Planck distribution f°(p,t):

f(xa p7t) = fo(pat) +5f(X,p,t) (6148)

or similarly in terms of perturbations in the temperature field
T(x,,1) = T() + 6T(x, p,1) = T(¢) [1 + O(x, 5, 1) (6.149)

where O(x,p,t) = 6T (x,p,t)/T(t), so that

s = oo ] -1}

0
= f’(n,t) —paa‘;@ (6.149)
or
6f(x,p,t) = —pa—fo@ (6.150)

dp



6.15. PERTURBED BOLTZMANN EQUATIONS

Keeping only first-order terms, we have

df 0P 50O | O
dt N _pﬁp @+a8mi+q)+a8xi

1st order

Compton scattering of photon off electrons is the main interaction:
e (@) +7(p) ¢ e (d) +7(p')
with amplitude
IM|? ~ 8rorm?
and the collision term is given by

<W@v _ Qﬁ%ﬁq%—e+ﬁwd
at ).

=—p ap

where

1 m
o= = / W e

The full equation becomes

. p; 00 . n; O )
6+ .—|-<I>+p*7-=neUT B0 — O +p- Vi)
a Oz a 0zt

Then,
* Change t — 7,

* Change to Fourier space,

* use p = cos(f) = K2 — kibs — piki = pk
k k K

* Define optical depth: 7/ = g—; = —neora

and finally

O +iku® + & + ikp¥’ = —7' [0¢ — O + vy
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(6.151)

(6.152)

(6.153)

(6.154)

(6.155)
(6.156)

(6.157)

(6.158)

(6.159)
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6.15.2 Dark matter

For cold dark matter it is easier to simply use energy-momentum conservation. But following the
Boltzmann equations we also obtain

5L +ikivl +30 = 0 (6.160)

/

<vg)'+<z> vl ik = 0 (6.161)

or in terms of 6.(x,t) =V - v(x,t) = ikv,
6b4+60.+30 = 0 (6.162)
/
0, + (“) 0, — K20 = 0 (6.163)
a

The 2 equations may be combined to give

/ /
5 + (‘;) 5 +3 [@” + (2) @’} = —k*U (6.164)

6.15.3 Baryons

For baryons, need to consider the interactions

e(q) +p(Q) — e(d)+p(@Q) (6.165)
e(g) +7(p) — e(d)+() (6.166)
to obtain
8 +ikvy + 30 = 0 (6.167)
o+ <Z) Ve +ikT = T";’;}Z 310, + v (6.168)

6.15.4 Neutrinos

Massless neutrinos: similar to photons, but different temperature 7% and no collision term. Define
N =T, /T,, such that

N +ikuN + @ + ikp¥' =0 (6.169)

Massive neutrinos: evolution starts as massless neutrinos while they are relativistic. Transition
to transition to that of dark matter once they become non-relativistic.

See Ma & Bertschinger 1995 for a careful description of:
1) linear perturbations for all components above and Einstein Equations in both Conformal New-
tonian Gauge and Synchronous Gauge.

2) a technique to solve the equations for photons and neutrinos in terms of a multipole expansion
in Legendre polynomials.



6.16. PERTURBED EINSTEIN EQUATIONS

6.16 Perturbed Einstein Equations

FRW metric with Newtonian perturbations 4+ Einstein Equations:

k20— 3H <<i> . H\I/) —  _4nGdp

—kX(® — HU) = 47G(p + P)(ik'v;)
. . . a 2
O — H(V — 3D) — <2a + H2> U+ %(\IJ +®) = —4nGSP
a a

k2T 4+ ®) = 327GpO.
Consider first and third equation in a non-expanding universe and static fields:

—k*® = —4nGop

ki(\l’—HI))

5.2 —47G6P
a

so adding the first and 3 times the second we have

V23U = 457G (5p + 36 P)
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(6.174)

(6.175)
(6.176)

(6.177)

In General Relativity, pressure perturbation is also a source to the gravitational potential W .

Finally, we saw initial conditions from the Boltzmann/Einstein equations themselves.

We ended the semester looking at the Inflation model as a solution to a number of problems
in the Big Bang scenario (horizon problem, flatness problem, unwanted relics), as well as a means
of producing and magnifying quantum perturbations in the early Universe, and its implementation

with a slowly-rolling scalar field.
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