PGF5299: Physical Cosmology II

Problem Set 5

(Due October 22, 2021)

1) Halo Model Ingredients

In PS4, you computed the halo mass-function for a fit from (Tinker et al. 2008) as described in the main text of this paper. Now let us consider Tinker's alternative fit

$$
\begin{align*}
\frac{d n\left(z, M_{v i r}\right)}{d \ln M_{v i r}} & =g(\sigma) \frac{\bar{\rho}_{m 0}}{M_{v i r}} \frac{d \ln \sigma^{-1}}{d \ln M_{v i r}} \tag{1}\\
g(\sigma) & =B\left[\left(\frac{\sigma}{e}\right)^{-d}+\sigma^{-f}\right] \exp \left[-\frac{g}{\sigma^{2}}\right] \tag{2}
\end{align*}
$$

where instead we use the function $g(\sigma)$ from Appendix C in Tinker's paper (why do we do this?). Set parameter values for parameters B, d, e, f, g which are appropriate for $\Delta=$ Δ_{c} / Ω_{m} (computed from Eqs. 10-12 below, which sets the mass to be the virial mass $M=$ $\left.M_{v i r}\right)$. For $\Omega_{m}=0.23, \Delta \approx 397$, which you may approximate as $\Delta=400$ for purposes of using Tinker's fits. Here $\sigma^{2}\left(M_{v i r}\right)$

$$
\begin{equation*}
\sigma^{2}(z, R)=G^{2}(z) \int \frac{k^{2} d k}{2 \pi^{2}}|W(k R)|^{2} P_{L}(k) \tag{3}
\end{equation*}
$$

where $M_{v i r}=\bar{\rho}_{m 0} 4 \pi R^{3} / 3, \bar{\rho}_{m 0}=\Omega_{m} \rho_{\text {crit }, 0}, P_{L}(k)$ is the linear power spectrum at redshift $z=0, G(z)=D(z) / D(z=0)$ is the growth function normalized to its value today, and

$$
\begin{equation*}
W(k R)=\frac{3}{k^{2} R^{2}}\left[\frac{\sin (k R)}{k R}-\cos (k R)\right] \tag{4}
\end{equation*}
$$

is the Fourier Transform of a spherical top-hat window of radius R.
a) For a fiducial cosmology, compute the halo mass-function above and plot it versus $M_{\text {vir }}$ for $z=0$ and $z=1$ in the range $M_{\text {vir }}=\left[10^{12}, 10^{16}\right] M_{\odot} / h$. Use log scale in both axes.

Check that the mass function is properly normalized i.e. that $\int[-g(\sigma) / \sigma] d \sigma=1$. If you do this integral from 0 to $\sigma_{\max }$, for what value of $\sigma_{\max }$ the integral is equal to 0.95 ? What value of $M_{v i r}$ corresponds to this $\sigma_{\max }$? This means that if you do integrations in halo mass with this lower limit mass, you're missing out 5% of the background energy density.
b) For the fiducial cosmology, compute the halo bias for the fit from Tinker et al. 2010:

$$
\begin{equation*}
b(z, M)=1-A \frac{\nu^{a}}{\nu^{a}+\delta_{c}^{a}}+B \nu^{b}+C \nu^{c} \tag{5}
\end{equation*}
$$

where $\nu=\delta_{c} / \sigma$. Again, for consistency use values of A, a, B, b, C, c which are appropriate for $\Delta=\Delta_{c} / \Omega_{m}\left(\approx 400\right.$ for $\left.\Omega_{m}=0.23\right)$, i.e. $M=M_{v i r}$. See Tinker's Eqs. 6 and 7 and Table 2. Notice that the paper for Tinker's bias (2010) is different from that for the mass-function (2008)!

Plot $b\left(z, M_{v i r}\right)$ versus $M_{v i r}$ for $z=0$ and $z=1$ in the range $M_{v i r}=\left[10^{12}, 10^{16}\right] M_{\odot} / h$. Use log scale in the $M_{v i r}$ axis and linear scale for $b\left(M_{v i r}\right)$.

Check that the bias function above is properly normalized, i.e. $\int[g(\nu) b(\nu) / \nu] d \nu=1$. If the mass-function and/or bias are not normalized appropriately, you will likely obtain incorrect results for the 2-halo term in Eq. 19 below (which will not properly approach the linear spectrum at large scales). The 1-halo term in Eq. 18 will also be affected.
c) For the fiducial cosmology, compute the halo profile for the fit of NFW:

$$
\begin{equation*}
\rho\left(r \mid M_{v i r}, z\right)=\frac{\rho_{s}}{c r / r_{v i r}\left(1+c r / r_{v i r}\right)^{2}} \tag{6}
\end{equation*}
$$

for halos of mass $M_{v i r}=10^{14}$ and $10^{15} M_{\odot} / h$, at redshifts $z=0$ and $z=1$. Plot $\rho(r)$ versus r for these 4 cases in the same plot with \log scale in both axes. Notice that ρ_{s}, c and $r_{v i r}$ are functions of $M_{v i r}$ and z. In order to determine these 3 quantities for a given $M_{v i r}$ and z, you need the formulae sequence below:

$$
\begin{align*}
E^{2}(z) & =\Omega_{m}(1+z)^{3}+\Omega_{D E}(1+z)^{3(1+w)}, \tag{7}\\
\rho_{\text {crit }, 0} & =2.775 \times 10^{11} h^{2} M_{\odot} \mathrm{Mpc}^{-3}, \tag{8}\\
\rho_{\text {crit }}(z) & =\rho_{\text {crit }, 0} E^{2}(z), \tag{9}\\
\omega_{m}(z) & =\Omega_{m}(1+z)^{3} / E^{2}(z), \tag{10}\\
x & =\omega_{m}(z)-1, \tag{11}\\
\Delta_{c} & =18 \pi^{2}+82 x-39 x^{2}, \quad \text { (Bryan \& Norman 1997) } \tag{12}\\
\Delta_{c} & =\frac{3 M_{v i r}}{\rho_{\text {crit }}(z) 4 \pi r_{v i r}^{3}} \rightarrow \quad \text { Find } r_{v i r}, \tag{13}\\
\nu\left(M^{*}\right) & =1 \quad \rightarrow \quad \text { Find } M^{*}, \tag{14}\\
c\left(M_{v i r}, z\right) & =\frac{9}{1+z}\left[\frac{M_{v i r}}{M^{*}}\right] \quad \quad(\text { Bullock et al. 2001) } \quad \rightarrow \quad \text { Find } c, \tag{15}\\
M_{v i r} & =4 \pi \rho_{s} \frac{r_{v i r}^{3}}{c^{3}}\left[\ln (1+c)-\frac{c}{1+c}\right] \quad \rightarrow \quad \text { Find } \rho_{s}, \tag{16}
\end{align*}
$$

Finally compute numerically or analytically (see Cooray \& Sheth 2002) the Fourier Transform for the spherically symmetric halo profile at $z=0$:

$$
\begin{equation*}
u\left(k \mid M_{v i r}\right)=\int_{0}^{r_{v i r}} d r 4 \pi r^{2} \frac{\sin k r}{k r} \frac{\rho\left(r \mid M_{v i r}\right)}{M_{v i r}} \tag{17}
\end{equation*}
$$

Plot $u\left(k \mid M_{v i r}\right)$ versus k at $z=0$, for $M_{v i r}=10^{10}, 10^{11}, 10^{12}, 10^{13}, 10^{14}, 10^{15}, 10^{16} M_{\odot} / h$. Show all cases in the same plot, and use log scale in both axes. Do you find something similar to Fig. 9 in Cooray \& Sheth 2002 ?

Make sure $u\left(k \mid M_{v i r}\right) \rightarrow 1$ as $k \rightarrow 0$ for all values of $M_{v i r}$.
2) Halo Model: Combine the Halo Model ingredients you found before to compute the Halo-Model power spectrum at $z=0$ with the formulae sequence:

$$
\begin{align*}
P^{1 h}(k) & =\int d \ln M \frac{M^{2}}{\bar{\rho}_{m 0}^{2}} \frac{d n}{d \ln M}|u(k \mid M)|^{2} \tag{18}\\
P^{2 h}(k) & =\left[\int d \ln M \frac{M}{\bar{\rho}_{m 0}} \frac{d n}{d \ln M} b(M) u(k \mid M)\right]^{2} P_{L}(k) \tag{19}\\
P(k) & =P^{1 h}(k)+P^{2 h}(k) \tag{20}
\end{align*}
$$

Note that as $k \rightarrow 0, u(k \mid M) \rightarrow 1$, so in Eq. 19 the term within []'s $\rightarrow 1$ (due to the halo bias normalization condition), and therefore $P^{2 h}(k) \rightarrow P_{L}(k)$. However for finite and large $k, P^{2 h}(k) \neq P_{L}(k)$. Plot in the same figure using different line types and colors:

- $P_{L}(k)$ (linear spectrum),
- $P^{1 h}(k)$ (1-halo term),
- $P^{2 h}(k)$ (2-halo term),
- $P(k)$ (total halo model spectrum),
- $P^{H F}(k)$ (the non-linear spectrum from halofit (Takahashi 2012). See nonlinear options inside CAMB).

Use log scale in both axes and set the range $k=\left[10^{-3}, 10^{1}\right] h / \mathrm{Mpc}$ (change the value of $k_{\text {max }}$ in CAMB if necessary). Below is a sample plot of $P_{L}(k)$ and $P^{H F}(k)$ (first and last in the list above). The idea is for you to fill a plot like this with the other terms.

How does your $P(k)$ compare to $P^{H F}(k)$?

Figure 1: The thick blue line indicates the linear power spectrum $P_{L}(k)$ from CAMB. The thin red line is a fit to simulations for the nonlinear power spectrum $P^{H F}(k)$ from the halofit code by Takahashi et al. 2012 (https://arxiv.org/abs/1208.2701). Hopefully your total Halo Model spectrum $P(k)$ will be similar to the halofit nonlinear spectrum.

