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Prologue

The five lectures (or Chapters) which follow are intended as a pedagogical, theoretically oriented
introduction to the presently very active field involving the physics of Bose-Einstein condensation in
trapped atomic gases. The lectures have been prepared for the 2004 Brazilian School on Statistical
Mechanics, having in mind an audience of graduate and advanced undergraduate students possibly, and
perhaps even typically, not concentrating in the subject. Needless to say, this makes them quite distinct
from a review article on the subject, chiefly as considerations of impedance matching with the intended
audience plays the dominant role in the choice and development of topics. This particular School is
perhaps a somewhat peculiar setting for these lectures, since the systems which will be considered
are orderly enough to be quite well described, for several relevant purposes, even in terms of a single
one-body wavefunction. This will be discussed in lecture 2, after the statistical mechanics of the
condensation phenomenon for an ideal Bose gas is discussed in lecture 1. A fortunate circumstance in
this connection is that the condensation of an ideal gas is today no longer just a simplifying idealization,
but an experimentally studied (i.e., real) phenomenon (see section 1.2). This will be discussed in
some detail in lecture 3, together with the just now fashionable theme of molecular hybridization
of dilute Bose-Einstein condensates and Bose-Einstein condensation of diatomic molecules formed
in very cold fermionic gases. Lecture 4 will carry us slightly beyond the basic “single one-body
wavefunction” description of real condensates, and lecture 5 will introduce experimental results on the
optical fracturing of condensates as well as some of the ideas and simplified models used in connection
with such situations.

In preparing these lectures, I have tried my best to avoid being trapped in what has been called
by the former brazilian minister Pedro Malan in a newspaper article published on page 2 of O Estado

de São Paulo in January 11, 2004 (or was this also a quote?) “some kind of error contract” between
someone trying to transmit thoughts and ideas and his “receivers”. This syndrome has been supposedly
described by none other than Francis Bacon. It was brought to Malan’s attention (thus finding its
way to his article and finally to this Prologue) by a book by another economist, Eduardo Giannetti da
Fonseca, who identifies Bacon’s The advancement of learning, as the source. As I have not been able
to locate the original quote in time, I do my best translating (re-translating?) the brazilian version
of the quote to English, certainly not Bacon’s: “Who transmits knowledge chooses to do it so as to
enhance belief rather than the possibility of examination, and who receives knowledge seeks rather
present satisfaction than the promises of investigation, and thus will rather not doubt than not fail;
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glory leads the author not to reveal his weaknesses, and laziness leads the disciple not to realize his
strength”1. Curious as my sources for these ideas happened to be, the dangers to which they refer are

1Scanning once again Book 1 of Bacon’s The advancement of learning I finally realized that at least some heavy
editing has been involved in these in fact rather loose quotes. The closest, or most relevant, passages I have been able
to find in Bacon’s original work are transcribed here as they appear in the Renascence Editions “imprint” available on
line at the site http://darkwing.uoregon.edu/˜rbear/adv1.htm, see especially paragraph 9 of section V:

“BOOK 1, IV.12. And as for the overmuch credit that hath been given unto authors in sciences, in making them
dictators, that their words should stand, and not counsellors to give advice; the damage is infinite that sciences have
received thereby, as the principal cause that hath kept them low at a stay without growth or advancement. For hence
it hath come, that in arts mechanical the first deviser comes shortest, and time addeth and perfecteth; but in sciences
the first author goeth farthest, and time leeseth and corrupteth. So we see, artillery, sailing, printing, and the like, were
grossly managed at the first, and by time accommodated and refined: but contrariwise, the philosophies and sciences
of Aristotle, Plato, Democritus, Hippocrates, Euclides, Archimedes, of most vigour at the first and by time degenerate
and imbased; whereof the reason is no other, but that in the former many wits and industries have contributed in one;
and in the latter many wits and industries have been spent about the wit of some one, whom many times they have
rather depraved than illustrated. For as water will not ascend higher than the level of the first springhead from whence
it descendeth, so knowledge derived from Aristotle, and exempted from liberty of examination, will not rise again higher
than the knowledge of Aristotle. And therefore although the position be good, OPORTET DISCENTEM CREDERE,
yet it must be coupled with this, OPORTO EDOCTUM JUDICARE; for disciples do owe unto masters only a temporary
belief and a suspension of their own judgment until they be fully instructed, and not an absolute resignation or perpetual
captivity: and therefore, to conclude this point, I will say no more, but so let great authors have their due, as time, which
is the author of authors, be not deprived of his due, which is, further and further to discover truth. Thus have I gone over
these three diseases of learning; besides the which there are some other rather peccant humours that formed diseases:
which nevertheless are not so secret and intrinsic but that they fall under a popular observation and traducement, and
therefore are not to be passed over. (. . . )

V.6. Another error hath proceeded from too great a reverence, and a kind of adoration of the mind and understand-
ing of man; by means whereof men have withdrawn themselves too much from the contemplation of nature, and the
observations of experience, and have tumbled up and down in their own reason and conceits. Upon these intellectualists,
which are notwithstanding commonly taken for the most sublime and divine philosophers, Heraclitus gave a just censure,
saying, MEN SOUGHT TRUTH IN THEIR OWN LITTLE WORLDS, AND NOT IN THE GREAT AND COMMON
WORLD; for they disdain to spell, and so by degrees to read in the volume of God’s works: and contrariwise by continual
meditation and agitation of wit do urge and as it were invocate their own spirits to divine and give oracles unto them,
whereby they are deservedly deluded. (. . . )

9. Another error is in the manner of the tradition and delivery of knowledge, which is for the most part magistral
and peremptory, and not ingenuous and faithful; in a sort as may be soonest believed, and not easiliest examined. I: is
true, that in compendious treatises for practice that form is not to be disallowed: but in the true handling of knowledge,
men ought not to fall either on the one side into the vein of Velleius the Epicurean: NIL TAM METUENS, QUAM NE
DUBITARE ALIQUA DE RE VIDERETUR; [13] nor on the other side into Socrates his ironical doubting of all things;
but to propound things sincerely with more or less asseveration, as they stand in a man’s own judgment proved more or
less. (. . . )

11. But the greatest error of all the rest is the mistaking or misplacing of the last or farthest end of knowledge: for
men have entered into a desire of learning and knowledge, sometimes upon a natural curiosity and inquisitive appetite;
sometimes to entertain their minds with variety and delight; sometimes for ornament and reputation; and sometimes
to enable them to victory of wit and contradiction; and most times for lucre and profession; and seldom sincerely to
give a true account of their gift of reason, to the benefit and use of men: as if there were sought in knowledge a couch
whereupon to rest a searching and restless spirit; or a tarrasse, for a wandering and variable mind to walk up and down
with a fair prospect; or a tower of state, for a proud mind to raise itself upon; or a fort or commanding ground, for strife
and contention; or a shop, for profit or sale; and not a rich storehouse, for the glory of the Creator and the relief of man’s
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serious enough to deserve careful consideration. I thus hope that the content of the lectures will be
doubted rather than believed, and tried to encourage this by not concealing remaining obscurities.

A word should be said on why these lectures, or Chapters, have been written in what amounts
to the lingua franca2 of today. The organizers of the School said they intended to publish written
versions of the courses in a special issue of the former Revista Brasileira de F́ısica, now known as
Brazilian Journal of Physics. My reaction to this was that it tended to create a certain conflict, as
the scope, tone and purpose of course notes differ a lot from that of material usually printed even in
special issues of periodicals. The intention having been maintained, my option has been to stick to
the scope, tone and purpose of course notes while borrowing the use of the lingua franca from the
periodical literature. Which might, after all, also have some pedagogical effect.

A. F. R. de Toledo Piza,
Feb. 8, 2004.

estate. Rut this is that which will indeed dignify and exalt knowledge, if contemplation and action may be more nearly
and straitly conjoined and united together than they have been; a conjunction like unto that of the two highest planets,
Saturn, the planet of rest and contemplation, and Jupiter, the planet of civil society and action: howbeit, I do not mean,
when I speak of use and action, that end before-mentioned of the applying of knowledge to lucre and profession; for I
am not ignorant how much that diverteth and interrupteth the prosecution and advancement of knowledge, like unto the
golden ball thrown before Atalanta, which while she goeth aside and stoopeth to take up, the race is hindered;

Declinat cursus, aurumque volubile tollit. (. . . )” (Feb. 28, 2004)

2Lingua Franca; a composite language made up of Italian and the various languages of western Asia, used in the
Levant by foreign traders and natives of that region. (Webster’s New Twentieth Century Dictionary of the English
Language, Unabridged. Rockville House Publishers, Inc., New York, 1964).
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Chapter 1

Condensation of ideal bosons in a trap

1.1 Grand-canonical quantum statistics

1. Prolegomena: state vectors vs. density operators. States of thermal equilibrium of many-
particle quantum systems cannot be represented by state vectors on the account of the fact that they
do not correspond to definite microscopically defined states, but rather correspond to an incoherent
distribution over the various possible such states. In this context, incoherent means that any interfer-
ence effects involving different states in the distribution are precluded. One needs therefore a suitably
extended way of describing quantum states in order to be able to deal with thermal equilibrium states.

The required extension is provided by the notion of density operators. Consider first how this
notion arises in the particular situation in which the state of the system can be described in terms of a
state vector. If the microscopically defined state of a many particle quantum system is characterized
by a normalized state vector |ψ〉, 〈ψ|ψ〉 = 1 (or, equivalently, by a wavefunction ψ(r1, . . . , rN ) ≡
〈r1, . . . , rN |ψ〉, where |r1, . . . , rN 〉 is a Dirac eigenket of the position operators for the various particles),
then it is characterized as well by the density operator, defined in this case as the projection operator

ρ ≡ |ψ〉〈ψ|

or, equivalently, by the (N-particle) density matrix

ρ(r1, . . . , rN ; r′1, . . . , r
′
N ) ≡ 〈r1, . . . , rN |ψ〉〈ψ|r′1, . . . , r′N 〉 ≡

≡ ψ(r1, . . . , rN )ψ∗(r′1, . . . , r
′
N ).

The normalization of the state vector translates into the property that the density operator, or matrix,
has unit trace, i.e.

Tr ρ ≡
∫

d3r1 . . .

∫

d3rNψ(r1, . . . , rN )ψ∗(r1, . . . , rN ) =
∑

j

〈φj |ψ〉〈ψ|φj〉 = 1
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where the vectors {|φj〉} constitute an arbitrary orthonormal base in state vector space. In this case
the operator ρ is clearly an idempotent (i.e., ρ2 = ρ) self-adjoint operator. Its only possible eigenvalues
are therefore 1 and 0. The eigenvector corresponding to the eigenvalue 1 is clearly the state vector
|ψ〉 itself (this is therefore how the original state vector |ψ〉 can be retrieved, given the corresponding
idempotent density operator ρ), while the eigenvalue 0 is highly degenerate, since any state-vector
orthogonal to |ψ〉 is an eigenvector associated to this eigenvalue. Note moreover that the expectation
value of some given observable O in the state |ψ〉 can be obtained directly from the density operator
as

TrOρ ≡
∑

j

〈φj |Oρ|φj〉 =
∑

j

〈φj |O|ψ〉〈ψ|φj〉 =
∑

j

〈ψ|φj〉〈φj |O|ψ〉 = 〈ψ|O|ψ〉,

the last step following from the completeness of the orthonormal base {|φj〉}. In a similar way one
can also verify the important cyclic property of the trace

TrOρ = Tr ρO

which is in fact more general, in that it does not depend on the particular form of ρ.
The required generalization of the way to characterize states of quantum systems in order to include

the needed incoherent distributions of state vectors consists in replacing the idempotency condition
ρ2 = ρ by the weaker condition that ρ is a non-negative self-adjoint operator with unit trace. The non-
negativity condition means that all the eigenvalues are non-negative, i.e. they are positive or zero.
These density operators can be conveniently written in terms of their eigenvalues and normalized
eigenvectors |Rj〉 as

ρ|Rj〉 = pj |Rj〉, pj ≥ 0, −→ ρ =
∑

j

|Rj〉pj〈Rj |. (1.1)

The unit trace condition is now expressed as
∑

j pj = 1. The idempotent density operators are clearly
particular cases of this more general class, which include moreover positive linear combinations of
many (possibly even an infinite number of) orthogonal projection operators. The unit trace condition
(actually the condition that the trace is finite is of course sufficient) in fact restricts a great deal
the spectrum of the more general density operators: by virtue of the Hilbert-Schmidt theorem it is
guaranteed to be a purely discrete spectrum; and when the number of non-zero eigenvalues is infinite,
they can only have zero as an accumulation point.

Average values of observables in states described by these density operators are also calculated in
terms of a trace, which gives now

TrOρ =
∑

j

O|Rj〉pj〈Rj | =
∑

j

pj〈Rj |O|Rj〉. (1.2)

This average appears thus as a weighted average of quantum expectation values in the state vectors
|Rj〉, with weights pj . A standard interpretation of this is that the density operator ρ describes an
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ensemble of systems, in which the (classical) probability of finding a system in state |Rj〉 is pj . A
particularly relevant property of the state represented by the density operator ρ, which gives a measure
of fragmentation of the trace into the array of classical probabilities is its entropy S (sometimes called
the von Neumann entropy), defined as

S = −kBTr (ρ ln ρ) = −kB
∑

j

pj ln pj . (1.3)

For kB > 0 this is a non-negative quantity which vanishes in the limit of an idempotent density opera-
tor. If the constant kB is taken as the Boltzmann constant, S has units of the standard thermodynamic
entropy.

A further step is still needed when one wishes to use grand-canonical methods, as it is often the case
in the context of Bose-Einstein condensation. In this case the number of particles in the many-particle
system under consideration is not fixed and must be seen as an observable. The way to accommodate
this is to use the language of “second quantization” (see, e.g., ref. [1], Chapter 7). The state vectors
now reside in a “Fock space”, or occupation number space, in which a number operator can be defined.
The basic objects representing states of thermal equilibrium of quantum many-particle systems are
thus to be taken as positive self-adjoint operators of unit trace in Fock space.

2. Grand-canonical equilibrium density operator. We now consider specifically a system of
many identical bosonic atoms characterized by a hamiltonian H. For the purposes of the formal devel-
opments to be undertaken at this point, this may include interactions between atoms, e.g. represented
by a suitable two-body potential v(rj , rl), in addition to an external, one-body confining potential
representing the trap. The state of the system is described by a density operator ρ in Fock space.
In this space we have also a number operator N , and the hamiltonian is represented by an operator
which commutes with N . This means that one could adopt a canonical formulation by restricting the
treatment to the N -particle sector of the Fock space, which is closed under the action of the number-
conserving hamiltonian H, but it will be convenient to allow for states in which neither the number
of atoms nor the energy are sharply defined.

The problem we are set to solve is to determine the density operator which makes the entropy an
extremum, with prescribed average values for the energy and number of atoms. The density operator is
written in the form (1.1), so that the average values of the hamiltonian H and of the number operator
N are given respectively by (see eq. (1.2))

TrHρ =
∑

j

pj〈Rj |H|Rj〉 and TrNρ =
∑

j

pj〈Rj |N |Rj〉.

The entropy is expressed as in eq. (1.3), provided the weights satisfy the condition
∑

j pj = 1 and the
states |Rj〉 are normalized, 〈Rj |Rj〉 = 1. These subsidiary conditions can all be taken care of in terms
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of Lagrange multipliers β, α, λ and ηj , so that the variational condition for the thermal equilibrium
state is

δ



−kB
∑

j

pj ln pj − β
∑

j

pj〈Rj |H|Rj〉 − α
∑

j

pj〈Rj |N |Rj〉 − λ
∑

j

pj +
∑

j

ηj〈Rj |Rj〉


 = 0.

Variation of pj gives

kB ln pj + kB + β〈Rj |H|Rj〉 + α〈Rj |N |Rj〉 + λ = 0 (1.4)

while variation of 〈Rj | leads to

pj(βH + αN)|Rj〉 = ηj |Rj〉 or (βH + αN)|Rj〉 =
ηj
pj

|Rj〉 ≡ εj |Rj〉, (1.5)

which shows that the states |Rj〉 are eigenstates of βH + αN , so that this operator and ρ are simul-
taneously diagonal, with β〈Rj |H|Rj〉 + α〈Rj |N |Rj〉 = εj . Straightforward algebra now gives, from
(1.4),

pj = e−1−λ/kBe−εj/kB

which, using the unit trace condition to evaluate the first exponential, leads to

pj =
e−εj/kB

∑

j e
−εj/kB

.

The denominator of this expression can be written as Tr
(

e−(βH+αN)/kB

)

, so that the resulting form

for the density operator is

ρ =

∑

j |Rj〉e−εj/kB 〈Rj |
Tr
(

e−(βH+αN)/kB
) =

e−(βH+αN)/kB

Tr
(

e−(βH+αN)/kB
) .

The meaning of the Lagrange multipliers λ, β and α in macroscopic terms can be found by com-
paring the statistical expression for the entropy which results from imposing the variational condition
(1.4), namely

S = kB + λ+ βTrHρ+ αTrNρ,

with the corresponding thermodynamic expression

S = − 1

T
(Ω − U + µN) ,
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where T is the temperature, Ω is the grand potential, µ is the chemical potential, N is the number of
particles and U is the internal energy. This allows one to make the identifications

kB + λ = −Ω

T
; β =

1

T
and α = −µ

T
.

The grand-canonical equilibrium density operator at temperature T becomes accordingly

ρ =
e
− 1

kBT
(H−µN)

Tr

(

e
− 1

kBT
(H−µN)

) . (1.6)

The chemical potential µ can still be seen as a Lagrange multiplier to be determined by the subsidiary
condition on the average total number of particles, TrNρ = 〈N〉.

Some general comments are in order at this point. First, note that the Bose-Einstein statistics
(in the case one is dealing with a system of many identical bosons) is entirely taken care of by the
appropriate setting up of the Fock space in which the density operator ρ resides. In fact an identical
result is obtained for a system consisting of many identical fermions, in which case the commutation
relations of the second quantized (or quantized field) operators are however changed as appropriate.
Second, for second-quantized hamiltonians H which commute with the total number operator N , the
eigenvectors |Rj〉 of the density operator are simultaneous eigenvectors of H and N and, except for
“accidental” degeneracy, no quantum interference effects exist involving different such eigenvectors. Of
course, all energies and particle numbers contribute (with appropriate weights) to the grand-canonical
thermal state described by ρ, and the actual determination of the appropriate eigenvectors involves
the full complexity of the quantum many-body problem. Finally, if the many-body hamiltonian H
includes an external, confining one-body potential to represent a trap for the particles, one cannot
take a thermodynamic limit by letting 〈N〉 → ∞ at constant density, since this is constrained by the
trap. Correspondingly, in this case the grand-canonical formulation loses its equivalence to alternate
(technically less friendly) treatments.

1.2 Ideal Bose gas in a trap

Non-interacting identical bosons in a trap, represented by an external, confining one-body potential
V (~r), can be handled in terms of a very simple (possibly the only simple) application of the previous
general results. What makes it simple is the absence of two- (or even possibly also otherwise many,
like three-, etc.) atom interactions, which are generally present in real systems. Because of this, the
qualification of this case as “ideal” has been entirely appropriate until late 2002, when a real “ideal”
condensate of cesium atoms was produced and studied in the Austrian town of Innsbruck[2]. As will
be discussed in Chapter 3 (see section 3.1), one remarkable experimental trick developed in connection
with the alkali gases, which is particularly important in the case of cesium atoms, allows for the
external control of the effective atom-atom interaction[3]. This is achieved by making judicious use
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of Zeeman displacements of atomic energy levels. Thus the control agent is just an external magnetic
field, and it has permitted to tune the effective interactions among condensate cesium atoms to zero.
The same trick had in fact been used before in the case of one of the rubidium isotopes (85Rb) to
obtain a real “ideal”, non Bose-Einstein condensed thermal gas[4].

The case of an extended, non-interacting gas of identical bosons is of course equally simple to deal
with in statistical mechanical terms, and became in fact a standard textbook case, in which one is able
to take the thermodynamic limit and derive exact statistical mechanics results (see e.g. [6], section
1.9). In the case of the trapped ideal gas, the possibility of taking a thermodynamic limit (in the
usual sense, at least) is excluded, so that in this case the results will bear marks which are specific of
the grand-canonical formulation and which are moreover possibly artificial, such as particle number
fluctuations. In spite of this, technical convenience has been decisive for the use of a grand-canonical
framework for the trapped gas [7, 8].

The second-quantized hamiltonian for the non-interacting bosons in the trap can be written as

H =
∑

n

ena
†
nan

where the energies en are the single-particle (with mass M) eigenvalues associated with the bound
(normalized), stationary single-particle eigenfunctions ϕn(~r) of the trap

[

− h̄
2∇2

2M
+ V (~r)

]

ϕn(~r) = enϕn(~r) (1.7)

and the an, a
†
n are boson annihilation and creation operators associated with the single-particle eigen-

functions ϕn(~r). They satisfy the standard Bose commutation relations

[am, a
†
n] = δmn, [am, an] = [a†m, a

†
n] = 0

and are related to the Bose field operators ψ(~r), ψ†(~r), which in turn satisfy the commutation relations

[ψ(~r), ψ†(~r ′)] = δ(~r − ~r ′), [ψ(~r), ψ(~r ′)] = [ψ†(~r), ψ†(~r ′)] = 0,

through

an =

∫

d3r ϕ∗
n(~r)ψ(~r), a†n =

∫

d3r ϕn(~r)ψ
†(~r).

Note that the spin degree of freedom has been ignored in this formulation, which therefore applies
either to spinless bosons or to bosons with spin but constrained to a definite magnetic substate, as it
is in fact the case for magnetic traps. For non-interacting bosons of spin S and spin-independent trap
one-body potential one would still have to take into account the 2S+1 degeneracy of the single-particle
states.

The number operator is in this setup given as
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N =
∑

n

a†nan

so that the grand-canonical density operator (1.6) can be worked out to acquire the form of a product
of single-particle factors:

ρ =
e
− 1

kBT

∑

n
(en−µ)a†nan

Tr

(

e
− 1

kBT

∑

n
(en−µ)a†nan

) =
∏

n

e
− 1

kBT
(en−µ)a†nan

∑∞
νn=0 e

− νn
kBT

(en−µ)
=
∏

n

e
− 1

kBT
(en−µ)a†nan

(

1 − e
− en−µ

kBT

)−1 . (1.8)

In the first step above the commutativity of the different terms in the exponents has been taken
advantage of, while transition to the last form involved using the standard formula for the sum of a
geometric series. Note that convergence of the series requires that en − µ > 0 for all n, which implies
that the chemical potential µ has the smallest single-particle eigenvalue e0 (say) as an upper bound.
In what follows we define the energy scale so that e0 ≡ 0, so that one must have −∞ < µ < 0.

As mentioned in the preceding section, the value of µ is fixed by the subsidiary condition that the
mean total number of particles (taken in the density operator (1.8)). To this effect we must evaluate

〈N〉 = Tr

(

∑

n

a†nan ρ

)

=
∑

n

Tr
(

a†nan ρ
)

=
∑

n

〈Nn〉,

where 〈Nn〉 is the mean number of particles in the single-particle level n. This can be evaluated as

〈Nn〉 = Tr
(

a†nan ρ
)

=

(

1 − e
− en−µ

kBT

)

Tr

(

a†nane
− 1

kBT
(en−µ)a†nan

)

=

=

(

1 − e
− en−µ

kBT

) ∞
∑

ν=0

νe
− 1

kBT
(en−µ)ν

= −
(

1 − e
− en−µ

kBT

)

d

d (en−µ)
kBT

∞
∑

ν=0

e
− 1

kBT
(en−µ)ν

=

=
e
− 1

kBT
(en−µ)

1 − e
− 1

kBT
(en−µ)

≡ ze
− en

kBT

1 − ze
− en

kBT

, (1.9)

where, in the last step, the quantity z = e
µ

kBT , known as the fugacity, has been introduced. From the
bound on the chemical potential µ and our choice of energy scale it follows that 0 < z < 1. For a
given temperature T , it is to be determined by the subsidiary condition regarding the total number of
particles, since it determines the value of the chemical potential at that temperature. A particularly
interesting quantity is the mean occupation of the lowest single-particle state of the trap, which can
be written in terms of the fugacity simply as

〈N0〉 =
z

1 − z
, (1.10)
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which can essentially exhaust the total mean number 〈N〉 when the fugacity z approaches its upper
bound.

The actual determination of the chemical potential µ, or of the fugacity z, involves the the single-
particle spectrum en, and therefore requires further specification of the trap potential V (~r). A simple
choice, which is moreover “realistic” for the current experimental setups, is that of an anisotropic
harmonic potential

V (~r) → M

2

(

ω2
1x

2 + ω2
2y

2 + ω2
3z

2
)

which leads to the spectrum

en → en1n2n3
= h̄ω1n1 + h̄ω2n2 + h̄ω3n3, ni = 0, 1, 2, . . . , i = 1, 2, 3.

For numerical purposes it is convenient to rewrite the final expression (1.9) for 〈Nn〉 using again the
formula for the sum of a geometrical series as

〈Nn〉 = ze
− en

kBT

∞
∑

ν=0

zνe
− νen

kBT =
∞
∑

ν=1

zνe
− νen

kBT

so that with this choice of trap potential one has

〈Nn1n2n3
〉 =

∞
∑

ν=1

zνe
−νn1

h̄ω1
kBT

−νn2
h̄ω2
kBT

−νn3
h̄ω3
kBT .

The total mean number of particles is then[7]

〈N〉 =
∞
∑

n1,n2,n3=0

〈Nn1n2n3
〉 =

∞
∑

ν=1

∞
∑

n1,n2,n3=0

3
∏

i=1

zνe
−νni

h̄ωi
kBT =

∞
∑

ν=1

zν
3
∏

i=1

1

1 − e
−ν

h̄ωi
kBT

. (1.11)

From eq. (1.11) one can numerically determine the fugacity z (and hence the chemical potential µ)
as a function of the temperature. This completes the determination of the thermal quantum density
operator ρ for the ideal bosons in the harmonic trap. In the case of an isotropic trap, ω1 = ω2 = ω3 = ω
it reduces to

〈N〉 =
∞
∑

ν=1

zν
(

1 − e
−ν h̄ω

kBT

)3 . (1.12)

Before turning to numerical examples, it is useful to use the general expressions themselves in order
to characterize the Bose-Einstein condensation syndrome for the trapped ideal gas[8]. Returning for
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a moment to eq. (1.9), the total number of particles in excited single-particle states, 〈N〉 − 〈N0〉, can
be written as

〈N ′〉 = 〈N〉 − 〈N0〉 =
∞
∑

n=1

e
− 1

kBT
(en−µ)

1 − e
− 1

kBT
(en−µ)

=
∞
∑

n=1

1

e
1

kBT
(en−µ) − 1

<

<
∞
∑

n=1

1

e
en

kBT − 1
≡ 〈N ′

max〉. (1.13)

The inequality follows from the fact that z < 1. Thus, if 〈N〉 > 〈N ′
max〉, it follows that at least

〈N〉 − 〈N ′
max〉 must occupy the lowest single-particle state e0. The number 〈N ′

max〉 is accordingly
called the saturation number in [8]. For the isotropic harmonic trap, this saturation number can be
well approximated in terms of a simple, closed expression. The trick is to observe by a simple counting
procedure that in this special case the single-particle energy levels

en → h̄ω(n1 + n2 + n3), n = n1 + n2 + n3

are (n+ 1)(n+ 2)/2-fold degenerate, so that one has

〈N ′
max〉 =

1

2

∞
∑

n=1

(n+ 1)(n+ 2)

e
nh̄ω
kBT − 1

.

Now let nh̄ω/kBT ≡ x and h̄ω/kBT ≡ ξ. Provided ξ ¿ 1, the sum over n can be well approximated
by an integral as

〈N ′
max〉 →

1

2ξ3

∫ ∞

ξ/2

(x+ ξ)(x+ 2ξ)

ex − 1
dx.

The integrands involving x2 and x in the numerator are regular as x→ 0, and thus one can estimate
the corresponding integrals by replacing the lower integration limit ξ/2 by zero in them. Then

∫ ∞

0

x2dx

ex − 1
=

∫ ∞

0
x2 e−x

1 − e−x
dx =

∫ ∞

0

∞
∑

ν=1

x2e−νxdx =

∫ ∞

0

∞
∑

ν=1

2

ν2
e−νxdx =

∞
∑

ν=1

2

ν3
= 2ζ(3).

The sum of reciprocal powers has been expressed in terms of the Riemann zeta function ζ(s) (see
e.g. ref. [9]) which for s = 3 has the value ζ(3) = 1.202 . . . . As for the integral involving x in the
numerator of the integrand one gets similarly

3ξ

∫ ∞

0

x dx

ex − 1
= 3ξ

∫ ∞

0

∞
∑

ν=1

xe−νxdx = 3ξ
∞
∑

ν=1

1

ν2
= 3ξ × ζ(2) = 3ξ × 1.6449 . . .
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which, for ξ ¿ 1, amounts to just a small correction to the integral involving x2 in the integrand. As
for the remaining integral, involving the numerator 2ξ2, the lower integration limit cannot be taken
to zero due to the singular behavior of the integrand for x→ 0. It can however be evaluated as

2ξ2
∫ ∞

ξ/2

dx

ex − 1
= 2ξ2

∫ ∞

ξ/2

∞
∑

ν=1

e−νxdx = 2ξ2
∞
∑

ν=1

e−νξ/2

ν
= −2ξ2 ln(1 − e−ξ/2).

Due to the presence of the factor 2ξ2 this is again only a small correction to the first integral when
ξ ¿ 1. An adequate estimate of 〈N ′

max〉 for the isotropic harmonic trap, when x1 ¿ 1, or equivalently
h̄ω ¿ kBT , is therefore obtained by keeping just the ζ(3) contribution, leading to

〈N ′
max〉 '

ζ(3)

ξ3
= 1.202 . . .

(

kBT

h̄ω

)3

.

This formula is useful to set a temperature scale for the trapped ideal gas. In fact, the “critical”
temperature T harm

c at which this estimate of 〈N ′
max〉 becomes equal to the total mean number of

particles 〈N〉, namely

T harm
c =

h̄ω

kB

( 〈N〉
1.202 . . .

)

1

3

(1.14)

is that temperature below which the bosons start accumulating in the lowest single-particle state e0.
Note that T harm

c depends on the total mean number of bosons in the harmonic trap. The corresponding
value of ξ is ξc ≡ h̄ω/kBTc = (1.202 . . . /〈N〉)1/3, which guarantees that ξc ¿ 1 and hence the reliability
of the estimate if 〈N〉 is not too small.

Results obtained by solving numerically eq. (1.12) for the fugacity z and using eq. (1.10) to
evaluate the occupancy of the lowest single-particle state e0 as a function of temperature are shown
for an isotropic harmonic trap in figure 1.1. The temperature is plotted in units of the “critical”
temperature T harm

c given by eq. (1.14) for the appropriate values of the total mean number of bosons.
Supplying the values of the constants involved in this formula one gets

T harm
c = 4.5 N

1

3 ν(Hz) × 10−11 0K

where ν = ω/2π is the trap frequency (in Hertz) and T harm
c is given in degrees Kelvin. Taking

ν = 200 Hz as a ballpark value for the trap frequency (which corresponds to an oscillator parameter
b ≡ (h̄/Mω)1/2 ' (20/Mamu)

1/2×10−3 cm, Mamu being the boson mass in atomic mass units), one sees
that T harm

c is about 40, 200 and 400 nano-Kelvin for 〈N〉 equal to 100, 10000 and 100000 respectively.

1.2.1 “Quasi one-dimensional” harmonic trap

Anisotropic traps can of course be dealt with going back to the more general eq. (1.11), instead of
using its isotropic specialization, eq. (1.12). Here we consider as an example the case of a “quasi
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Figure 1.1: Occupation of the lowest
single-particle state, N0/N , and fugac-
ity, z, (lowest graph, heavy lines) as a
function of T/Tc, for the indicated val-
ues of the total mean number of particles
in the isotropic harmonic trap. The up-
per graph is a logarithmic plot of N0/N
to exhibit more clearly the behavior of
this quantity in the transition region and
above.
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one-dimensional” trap[7], in which ω1 ' ω2 À ω3 = ω, with ω/2π in the 200 Hz ballpark. Thus the
harmonic trap is very stiff in the transverse (1 and 2) directions, the corresponding excitation energies
being much larger than that corresponding to longitudinal (direction 3) excitations.

In order to estimate the saturation number in this case, we neglect the contribution of transverse
excitations in eq. (1.13), which in this way reduces to

〈N ′
max〉 '

∞
∑

n=1

1

enξ − 1
→ 1

ξ

∫ ∞

ξ/2

dx

ex − 1
, ξ =

h̄ω

kBT
¿ 1.

The integral appearing here has been evaluated before, so that one obtains

〈N ′
max〉 ' −1

ξ
ln(1 − e−ξ/2) ' 1

ξ
ln

(

2

ξ

)

=
kBT

h̄ω
ln

(

2kBT

h̄ω

)

. (1.15)

The “critical temperature” T qod
c for the quasi one-dimensional, trapped free Bose gas is accordingly

now determined by the equation

〈N〉 =
kBT

qod
c

h̄ω
ln

(

2kBT
qod
c

h̄ω

)

, (1.16)
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Figure 1.2: Similar to fig. 1.1 for the
quasi one-dimensional trapped ideal gas.
The “critical” temperature Tc is now
given by eq. (1.16), for the indicated val-
ues of the total mean number of particles
in a quasi one-dimensional harmonic trap
with ω1/ω3 = ω2/ω3 = 104. The fugacity
and the condensed fraction have been ob-
tained from eq. (1.11), taking transverse
excitations into account.
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and, due to the slow variation of the logarithmic factor with respect to the linear one, the condition
ξ ¿ 1 is again satisfied provided 〈N〉 is not too small, ensuring the validity of the estimate.

Numerical results for a trap with ω1/ω3 = ω2/ω3 = 104 are shown in fig. 1.2. This implies an
aspect ratio of 1 : 100 for the ground state density, transverse excitation quanta being four orders of
magnitude larger than the longitudinal quantum. As in the case of fig. 1.1, the temperature is given in
units of Tc, now determined from eq. (1.16). The fugacity z and the fractional occupation of the lowest
level, 〈N0〉/〈N〉 have been obtained by solving eq. (1.11) numerically, without neglecting the transverse
excitations. This in fact affects especially the results for the fugacity, in the case with larger number
of particles. For 〈N〉 = 105, z remains within 1 % of 1 in the entire range shown in the figure, when
transverse excitations are neglected completely (as appropriate for the limit ω1/ω3 = ω2/ω3 → ∞.
One sees that the rise of the fractional occupation of the lowest level as the temperature is decreased
below the “critical” temperature is qualitatively similar to that found for the spherically symmetric
harmonic trap, but tends to a less abrupt, in fact linear character.

1.3 Uniform vs. trapped ideal Bose gas

The uniform ideal Bose-Einstein gas in three spatial dimensions, which was actually the case treated
initially by Einstein in the 1920’s, can be handled with the same tools used above in connection with
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the trapped gas. Here we replace eq. (1.7) by the free particle Schrödinger equation with periodic
boundary conditions in volume V, so that normalized single-particle wavefunctions and their respective
single-particle energies are

ϕ~k(~r) =
1√
V
ei
~k·~r, ek =

h̄2k2

2M
.

The corresponding boson creation and annihilation operators are written as a†~k
and a~k respectively.

Implementing the quantization volume as V ≡ L1L2L3 one has furthermore

k2 = k2
1 + k2

2 + k2
3 =

(

2π

L1

)2

n2
1 +

(

2π

L2

)2

n2
2 +

(

2π

L3

)2

n2
3

with ni = 0,±1,±2,±3, . . . , i = 1, 2, 3. With these ingredients the relation determining the fugacity,
which corresponds to eq. (1.11), reads

〈N(V)〉 =
∑

n1,n2,n3

〈N (V)
n1n2n3

〉 =
∑

n1,n2,n3

1

z−1eλ
2
T (n2

1
/L2

1
+n2

2
/L2

2
+n2

3
/L2

3) − 1
(1.17)

where 〈N(V)〉 is the total mean number of bosons in volume V and

λT ≡ 2πh̄√
2MkBT

(1.18)

is the de Broglie wavelength of a particle of mass M and kinetic energy kBT . It is interesting to write
down the saturation number for this case. It is given by

〈N ′
(V)max〉 =

∑

ni

′ 1

eλ
2
T (n2

1
/L2

1
+n2

2
/L2

2
+n2

3
/L2

3) − 1

where the term with n1 = n2 = n3 = 0 is excluded form the sum.
In order to study the uniform gas in three dimensions, set L1 = L2 = L3 = L and use the

appropriate density of states to approximate this sum in terms of an integral, for λT /L¿ 1, as

〈N ′
(L3)max〉 →

L3

λ3
T

∫ ′
d3x

ex2 − 1
=

4πL3

λ3
T

∫ ∞

λT /2L

x2dx

ex2 − 1
.

This shows that one can define in this case a saturation density

ρ′max ≡ 〈N ′
(L3)max〉/L3

which remains finite in the thermodynamic limit 〈N(L3)〉 → ∞, L → ∞ with constant total mean
density 〈N(L3)〉/L3. The limiting value of the integral can be obtained in terms of a series of standard
gaussian integrals as
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∫ ∞

0

x2dx

ex2 − 1
=

∫ ∞

0
x2

∞
∑

ν=1

e−νx
2

dx =

√
π

4

∞
∑

ν=1

1

ν3/2
=

√
π

4
ζ

(

3

2

)

=

√
π

4
× 2.612 . . .

so that the saturation density becomes in the thermodynamic limit

ρ′max → 2.612 . . .× π3/2

λ3
T

= 2.612 . . .×
(

2πMkBT

4π2h̄2

)
3

2

.

The temperature at which the saturation density equals the total density is the critical temperature

of the uniform gas, given therefore by (cf. eq.(1.14))

Tc =
2πh̄2

MkB

(

〈N(L3)〉
2.612 . . . L3

)
2

3

=
2πh̄2

MkBL2

(

〈N(L3)〉
2.612 . . .

)
2

3

(1.19)

This implies that in an extended, uniform system at a temperature smaller that the critical temperature
Tc given by (1.19), there will be a finite fraction of the total density which is associated with occupation
of the zero momentum state by the bosons. This is the standard (and original!) Bose-Einstein
condensation phenomenon.

Furthermore, it is interesting to compare in some detail the expressions (1.19) and (1.14) for
the critical temperature, which correspond respectively to the uniform ideal bose gas and to the
ideal bose gas confined in the isotropic harmonic trap. They have clearly a similar structure, the
critical temperature being given in both cases in terms of a single-particle energy scale divided by
the Boltzmann constant times a fractional power of the mean number of particles. In the case of the
uniform gas, this number refers to the quantization volume V = L3, which plays the role of a system
“size” and also determines the relevant single-particle energy scale h̄2/ML2. Analogously, in the case
of the harmonic trap the single-particle energy scale h̄ω defines a “size” scale through the oscillator
parameter b =

√

h̄/Mω, the single-particle energy scale being also proportional to the inverse square
of the size scale.

In both cases, therefore, the factor consisting of the energy scale divided by the Boltzmann constant
is proportional to the inverse square of the size scale of the system. In the case of the uniform gas
this size dependence is compensated by the factor involving the two thirds power of the mean number
of particles when taking the thermodynamic limit, but not so in the case of the harmonic trap, where
the corresponding factor involves the one third power of the mean number of particles. As a result of
this, if one enlarges the trap by reducing its frequency ω and at the same time increases the number
of particles so that the density parameter 〈N〉/b3 is kept constant, one is left with a system with a
lower critical temperature T harm

c , which in fact approaches zero as ω1/2. In this way one sees that
condensation of free bosons in the harmonic trap is a strictly finite system phenomenon1.

1The situation is if fact somewhat more complicated than just stated due to the fact that in order to write eq. (1.14)

19



An obvious question at this point concerns the ultimate origin of the different behaviors of the two
types of system. It can be answered, if somewhat technically, in terms of the basic dynamic ingredients
entering in the two statistical calculations, namely the single-particle spectra, including degeneracy
factors. In the case of the harmonic trap the level spacing is constant and the degeneracy increases
quadratically with quantum number, while for the free gas both the level spacing (the spectrum
having been discretized by periodic boundary conditions) and the degeneracy increase quadratically,
effectively inhibiting thermal excitations. In order to test this interpretation one may conceive an
anharmonic, symmetric trap with single-particle spectrum

en1,n2,n3
= h̄ω(n2

1 + n2
2 + n2

3)

the corresponding eigenfunctions being ordinary harmonic oscillator eigenfunctions. Then the relevant
size parameter b is proportional to ω−1/2, and one finds that Tc approaches a non-zero limit when 〈N〉
and b are increased with constant 〈N〉/b3.

A difference of another nature between the gas in the harmonic trap and the free gas relates to
the fact that in the latter case the condensate density 〈N0〉/L3 is spatially uniform (as also is the
total density), while in the trap it has the spatial distribution of the trap ground-state wavefunction,
|ϕ0(~r)|2, which is smaller than the total spatial distribution of the gas for T > 0. This is due to the fact
that in the case of the free gas the single-particle ground state is the zero momentum state, which leads
to the statement that the Bose-Einstein condensation of the free gas occurs “in momentum space”,
unlike the situation in the case of the trapped gas, in which spatial segregation of the condensed
fraction takes place. This latter effect has been in fact used as a signature for the occurrence of
condensation in trapped atomic gases. Note that a similar segregation occurs also in the case of the
hypothetical anharmonic trap. Since this allows for condensation in the “large system limit”, the
spatial segregation effect cannot be related to the restriction to finite systems of the condensation in
the harmonic trap.

1.3.1 One-dimensional free gas

We finally illustrate the dependence on the spatial dimensionality of the condensation phenomenon
by considering the case of a uniform one-dimensional ideal gas. To this effect we return to eq. (1.17)
and make the system highly anisotropic by letting L3 = L and L1/L = L2/LÀ 1. If these ratios are
so large that transverse excitations can be neglected (i.e., the restriction n1 = n2 = 0 applies), one
gets, writing n3 = n,

〈N(L)〉 =
∑

n

〈N (L)
n 〉 =

∑

n

1

z−1en
2λ2

T
/L2 − 1

(1.20)

“small corrections” involving higher powers of the small quantity ξ were neglected. A more complete appraisal of the
situation can be obtained by going back to the saturation number 〈N ′

max〉 for the symmetric harmonic trap including
the neglected contributions. As b is increased they remain smaller then the dominant contribution, but scale differently
with b. Thus, in the case of the trapped gas, strictly speaking the critical temperature is not an homogeneous function
of the scale parameter.
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The saturation number is given by the same expression with the n = 0 term omitted and with z = 1.
For small λT /L it can be estimated from the integral

〈N ′
(L)max〉 =

L

λT

∫ ∞

λT /2L

2dx

ex2 − 1
→ 4L2

λ2
T

= kBT

(

4π2h̄2

8ML2

)−1

, λT /L¿ 1,

showing that the corresponding critical temperature goes to zero as one approaches the thermody-
namic limit. The corresponding result for the (quasi) one-dimensional harmonic trap is given by eq.
(1.15) which, according to eq. (1.16), in fact prescribes an even slightly faster decrease of the critical
temperature when 〈N〉 and b are increased with constant 〈N〉/b.

1.4 Relevant parameters and orders of magnitude

According to eq. (1.19), the condensation of a homogeneous system of ideal bosons of mass M can
be characterized in terms of two length parameters. One of them is related to the mean interparticle

spacing, and can be taken as the inverse one-third power of the particle density, ρ
−1/3
P ≡ L/〈N(L3)〉1/3.

The second parameter can be taken as the thermal wavelength (1.18) associated with the critical
temperature Tc, λTc . In fact, eq. (1.19) can be expressed in terms of the dimensionless quantity ρPλ

3
Tc

as

ρPλ
3
Tc

= 2.612 . . . × π3/2.

It has become customary to use, instead of λT defined as in eq. (1.18), a so called de Broglie wavelength

λdB ≡ λT /
√
π, in terms of which one has

ρPλ
3
dB = 2.612 . . . , T = Tc.

This latter quantity is often referred to as the phase space density for the homogeneous gas, and
its critical value is often used as a ballpark to characterize experimentally the conditions to achieve
Bose-Einstein condensation. Note that this phase space density becomes larger as the density is
increased and as the temperature is lowered, so that the critical value represents a minimum value to
be attained if condensation is to be achieved. This is at the root of a customary pictorial interpretation
of the Bose-Einstein condensation as a “collective quantum effect” in which the allowed degree of
localization of different particles, represented by λdB, becomes smaller that the mean inter-particle

distance, represented by ρ
−1/3
P .

The use of the critical phase space density in order to characterize the onset of condensation of the
trapped gas is in principle unwarranted. Even the use of the thermal de Broglie wavelength must be
used with caution in view of the spatial quantization restrictions due to the trap potential. If, however,
one invokes semiclassical arguments to treat a sufficiently extended and dense trapped system as being
“locally uniform” it is easy to derive the semiclassical approximate relation[10]
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ρP (0)λ3
dB ' 2.612 . . . , T = Tc

where now ρP (~r) is local density of the trapped gas at position ~r, ρP (0) corresponds to the peak value
of the local density, assumed to be located at the origin of the adopted reference system. This relation
is in fact used experimentally in order to characterize the ballpark values of the parameters relevant
to the onset of condensation in traps, in substitution for (e.g.) eq. (1.14).

Finally, it is useful to quote expressions for the oscillator parameter b and for the de Broglie
wavelength λdB in practical units. One has

b '
√

40

M(amu) ν(Hz)
× 10−2 cm and λdB =

1.747
√

M(amu) T (µK)
× 10−4 cm (1.21)

where M(amu) is the mass of the atoms in atomic mass units, ν(Hz) is the frequency of the harmonic
trap in hertz and T (µK) is the temperature in micro-Kelvin.
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Chapter 2

Non-ideal dilute Bose gas

Interactions among atoms constitute an essential ingredient of nature as we see it, manifested in the
existence of molecules, from simple to very complex, liquid and solid phases both of pure elements
and compounds of various sorts, etc. In the comparatively very simple systems consisting of very cold,
dilute, trapped atomic gases which concern us here, atom-atom interactions also play an essential role,
to begin with, in the very process trough which they are produced. In fact, an important step towards
attaining the conditions for the formation of Bose-Einstein condensates is the so called evaporative

cooling. In this process the trap is set up in such a way that the “fastest” (more energetic) atoms
are allowed to escape, leading to a reduction in temperature through a re-establishment of thermal
equilibrium. Both the establishment of an initial velocity distribution of an “universal” (thermal)
type and its colder re-establishment following selective depletion of the initial one require the action of
atom-atom interactions. In this way, the recently achieved “ideal” condensate of cesium atoms could
only be produced by making use of a trick allowing the atom-atom interaction to be experimentally
“tuned”. Thus, in order to produce the “ideal” condensate, the interaction strength is first set to a
convenient value for the cooling process; after the (non-ideal!) condensate is produced, the interaction
strength is set to zero, rendering it “ideal”[2].

The natural ubiquity of bound complex molecular structures clearly indicates, moreover, that
interactions between atoms are in general extremely rich and complex and also that they must contain
enough attractive effects in order to account for the observed binding. As was put decades ago by
Victor Weisskopf, forces between atoms can be seen as being much “stronger” than the strong forces
between nucleons, in the sense that the latter have a single, almost spherically symmetric two-body
bound state (the deuteron), whereas a typical two-atom system has a huge number of spatially very
complex molecular bound states.

However, in a gaseous phase and at very low temperatures the complexities of the atom-atom
interaction are rendered largely ineffective. Considering an atom-atom collision event at values of the
relative momentum corresponding to kinetic energies kBT with T in the sub-micro Kelvin range, the
classical turning point for the centrifugal barrier corresponding to angular momentum l occurs at a
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relative separation rl given by

rl =

√

h̄2l(l + 1)

2MkBT
=
√

πl(l + 1)λdB(T ),

which, according to (1.21), is in the 10−4 cm range for l = 1. Since this is more than three orders
of magnitude larger than the sizes of molecules (or of atomic cross sections, typically associated to
linear dimensions of up to a few hundred Bohr radii), scattering processes are under these conditions
effectively restricted to s-wave elastic scattering, and are completely characterized by the corresponding
scattering phase-shift. This of course effectively restricts the immediate correlation capabilities of the
interatomic forces to nuclear simplicity, or even below, at least as long as one remains in a cold, gaseous
phase.

The attractive character of the interatomic forces, responsible for the existence of molecules and
of condensed (e.g. liquid and solid) phases at low temperatures signals however that the gaseous, non-
ideal many-boson systems which undergo Bose-Einstein condensation are in fact not approaching their
ground-states as they are cooled, but are rather approaching some excited state, meta-stable at best,
raising the important question of the degree of stability of this particular, and rather peculiar kind of
phase. Qualitatively, the meta-stability is enhanced if the cold gas is dilute, in the sense that three-
body collisions that are the only efficient way of disposing of the surplus energy (a process known as
three-body recombination) have a very small probability in comparison with with the two-body elastic
collisions responsible for establishing and maintaining thermal equilibrium.

2.1 Simple effective interaction

The center of mass scattering cross-section for scattering of two particles at low enough relative
energy h̄2k2/2µ, ~k being the relative momentum and µ being the reduced mass, so that only s-waves
are affected by the interparticle potential, can be expressed in terms of the s-wave phase shift δ0(k) as

dσ

dΩ
=

sin2 δ0(k)

k2

k→0−→ a2 (2.1)

where a has dimensions of length. There is no dependence of the cross-section on the center of mass
scattering angle. There are at least two different lessons to be learned from this simple fact. First,
very low energy scattering is largely insensitive to the detailed nature of the interparticle potential,
as its relevant effects can be characterized by a single parameter. Second, the s-wave scattering phase
shift δ0(k) is not very adequate for this purpose in view of the denominator k2, which requires sin δ0(k)
to vanish linearly when k → 0 for any finite value of the cross section.

In order to circumvent this inadequacy of the parameterization in terms of the phase shift one
introduces thescattering length a defined as

lim
k→0

k

sin δ0(k)
≡ −1

a
,
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which therefore coincides (with a defined sign) with the length parameter introduced in (2.1). In order
to refine the description to describe the dependence of the low-energy cross-section with the relative
momentum, this last definition is interpreted as the first term of an expansion, in powers of k, of the
quantity k cot δ0(k). One can show (see e.g. [1], section 5.1.6) that the linear term of the expansion
vanishes identically, so that it can be generally written as

k cot δ0(k) = −1

a
+
r0
2
k2 + . . . , (2.2)

known as the effective range expansion, and the coefficient r0 of the term quadratic in k is called the
effective range. With the use of this expansion, the low energy scattering can be described in terms of
just the two parameters a and r0, so that all potentials having given values of these parameters produce
the same scattering at low energies. An important point to be kept in mind is that the effective range
expansion gives a parameterization of the scattering amplitude (since it gives the dependence on k of
the only relevant phase shift δ0(k)). Therefore, in order to obtain the scattering length for some given
two-body potential one has to solve a two-body scattering problem. For instance, for a hard-core
repulsive potential or radius a the s-wave phase shift is δ0(k) = −ka. This is obtained by solving the
appropriate Schrödinger equation with scattering boundary conditions. From this result one finds that
the scattering length is equal to the hard-core radius, and that the effective range r0 vanishes. Note
that the parameters of the effective range expansion are finite, even though the potential itself is not,
and neither are perturbative amplitudes, such as the Born amplitude, for this particular potential.
This can be readily understood if one recalls that the scattering amplitude can in general be written
in terms of the exact scattering solution of the two-body Schrödinger equation |φ+

~k
〉 as (see [1], p. 512)

f~k→~k ′ = − M

2πh̄2 〈~k ′|V |φ+
~k
〉.

In the case of the hard-core potential this wavefunction vanishes inside the repulsive core, giving a
finite result for the bracket which determines the scattering amplitude.

This feature of the scattering amplitude has been used to a considerable extent in connection with
the many-body problem involving two-body interaction potentials which are possibly singular (e.g,
including hard cores). The basic trick consists in replacing the potential itself by an effective operator
which incorporates the correlation effects due to the potential which cannot be treated perturbatively.
It is known as Brueckner’s theory and has been originally developed in connection with the nuclear
(fermionic) many-body problem[11], but has been immediately applied also to the hard-sphere Bose-
Einstein gas[12]. In the case of the two-body scattering problem this is accomplished simply by the
transition operator T (k2) having the property (see [1], p. 537)

〈~k ′|V |φ+
~k
〉 = 〈~k ′|T (k2)|~k〉.

As indicated by the notation, this is in general an energy-dependent operator, requiring considerable
technical labor when used in more elaborate many-body calculations[12].
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A standard approach to the effective interaction currently used in connection with cold, dilute
Bose-Einstein atomic gases can be seen as a combination of the transition operator trick with the
effective range expansion. One replaces the actual atom-atom interaction by a “contact” (zero-range)
two body effective interaction which can be represented as

veff(~r1, ~r2) =
4πh̄2a

M
δ(~r1 − ~r2) (2.3)

where a stands for the scattering length characterizing the low energy atom-atom scattering. This fact
alone indicates immediately that this effective interaction is in fact related to the scattering amplitude,
and must therefore be seen as belonging to the hierarchical level of the transition operator, rather
than to that of the two-body potential. In fact, when veff is treated in the first Born approximation,
it reproduces the low-energy limit of the two-body collision cross-section, written in terms of the
scattering amplitude a. The many-body effective hamiltonian for a system of N identical bosons in
an external trap represented by the one body external potential V (~r) is therefore written as

Heff =
N
∑

i=1

(

p2
i

2M
+ V (~ri)

)

+
1

2

N
∑

i6=j=1

λδ(~ri − ~rj) with λ ≡ 4πh̄2a

M
(2.4)

or alternatively, in second-quantized form, as

Heff =

∫

d3rH(~r) ,

H(~r) = ψ†(~r)

(

− h̄
2∇2

2M
+ V (~r)

)

ψ(~r) +
λ

2
ψ†(~r)ψ†(~r)ψ(~r)ψ(~r) (2.5)

where H(~r) is the hamiltonian density, written in terms of the field operators ψ†(~r), ψ(~r) introduced
in page 11. Note again that spin degrees of freedom have been ignored. This is of course correct
for spinless identical bosons, but applies also to the case of bosons with non-zero spin when they
are constrained to just one magnetic substate, as it is the case for magnetic traps. Other situations
allowing for different spin states will be discussed below.

The two-body interaction term included in the effective hamiltonian (2.4), or (2.5), has the peculiar
feature that its attractive or repulsive character depends on the sign of the scattering length a being
negative or positive, respectively. A well known result of effective range theory is that the scattering
length of a purely repulsive potential is always positive. However, if the potential is not purely
repulsive, or even if it is purely attractive, the scattering length can in general have either one of the
two signs. Thus, from the fact that the scattering length is positive one cannot draw the conclusion
that the potential is repulsive. Actually, even though the atom-atom interaction involves enough
attraction to support a large number of molecular bound states, it may possibly be associated with
a positive scattering length, in which case it is represented by a repulsive effective interaction when
the prescription (2.3) is used. One clear implication of this is that a simple prescription such as eq.
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(2.3) cannot possibly be adequate for the treatment of more demanding properties of the many-boson
system, such as instabilities related to three-body recombination processes, to cite just one and very
obvious example. It is presently widely and successfully used mainly in connection with approximate
treatments of non-ideal, dilute Bose-Einstein condensed systems, of their elementary excitations and
of several of their collective properties, as discussed in continuation and in the following chapters.

The inclusion of the effective two-body interaction veff also introduces a new length parameter into
the many-boson system, associated with the effective range of the interaction, which can be identified

with the scattering length a. The relation of this parameter to the mean interparticle distance ρ
1/3
P , ρP

being the particle density, allows for a quantitative characterization of the “diluteness” of the system
in terms of the dimensionless quantity ρPa

3. The quantity a3 represents an interaction volume, so
that ρPa

3 corresponds to the average number of particles in the interaction volume. Typical densities
of gaseous condensates currently obtained are in the ballpark of ρP ∼ 1015 cm−3. Using a ' 100rB
also as a ballpark value for the scattering length, rB being the Bohr radius, one obtains ρPa

3 ∼ 10−4.
This quantity is therefore apt to be used as small expansion parameter when one deals with these
systems. This is to be contrasted with the situation of liquid 4He, for which ρPa

3 > 1.

2.2 Effective mean-field (Gross-Pitaevski) approximation

The simplest, but still extremely useful use of the effective hamiltonian (2.4) (or its second-quantized
version (2.5)) is the derivation of a “mean field approximation” to the Bose-Einstein condensed state
of the non-ideal, dilute gas. This can be obtained variationally by looking for extrema of the en-
ergy functional 〈Φ|Heff |Φ〉 using an ansatz for |Φ〉 of the Hartree type. In wavefunction language,
appropriate for use in connection with the form (2.4) of the effective hamiltonian, this ansatz is

Φ(~r1, . . . , ~rN ) =
N
∏

i=1

ϕ(~ri) (2.6)

where ϕ(~r) is a normalized single-particle wavefunction to be determined. Note that all bosons are
in the same single-particle state, so that the symmetrization requirement is fulfilled automatically.
Alternatively one can use the second-quantized form (2.5) of the effective hamiltonian in together
with the ansatz

|Φ〉 =
1√
N !
a†N |0〉

where the creation operator a† is expressed in terms of the field operator ψ†(~r) as

a† ≡
∫

d3r ϕ(~r)ψ†(~r).

Calculations are in this case made easier by noting the commutation relations
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[a, a†] = 1 and [ψ(~r), a†] = ϕ(~r)

which follow directly from the normalization of the single-particle wavefunction ϕ(~r) and from the
commutation relations of the field operators. Working either way one obtains for the energy functional
the result

〈Φ|Heff |Φ〉 ≡ E [ϕ(~r)] = N

∫

d3r ϕ∗(~r)

(

− h̄
2∇2

2M
+ V (~r)

)

ϕ(~r) +
λ

2
N(N − 1)

∫

d3r |ϕ(~r)|4. (2.7)

Now it is easy to see that this functional does not have a lower bound when the effective two-body
potential is attractive, i.e., when λ < 0, which amounts to a negative scattering length a. To this effect
it is sufficient to make a gaussian ansatz for the single-particle wavefunction

ϕ(~r) →
(

1

β
√
π

)
3

2

e−r
2/2β2

and note that the kinetic energy contribution is positive and proportional to β−2, the contribution of
the term involving the one-body potential is just the gaussian average of a supposedly non-singular
function of ~r, while the contribution from the two-body potential has the sign of λ and is proportional
to β−3. Therefore, if λ < 0 the value of the energy functional can be made arbitrarily negative by
choosing a sufficiently small value of β. This indicates the collapse of the system when the scattering
length is negative.

Remarkably, this fact that has been observed experimentally[2, 13], with some nontrivial character-
istics which are quantitatively consistent with properties of the energy functional (2.7). The relevant
properties can be spotted by actually evaluating the energy functional with the gaussian ansatz, as-
suming an isotropic harmonic trap with angular frequency ω, so that its size parameter is the oscillator
parameter b =

√

h̄/Mω. This is a straightforward exercise giving as result

E [ϕ(~r)] → 〈E〉(β) = Nh̄ω

[

3

4

(

b2

β2
+
β2

b2

)

+
(N − 1)a√

2π b

b3

β3

]

, (2.8)

where a is the scattering length appearing in the effective two-body potential parameter λ. Figure 2.1
shows a plot of the mean energy per particle (in units of h̄ω) as a function of β/b for some negative

values of the dimensionless parameter

γ ≡ (N − 1)a√
2πb

. (2.9)

The “collapse” situation is revealed by the mean energy per particle going to minus infinity as β/b→ 0,
but when γ is not negatively too large, this quantity also has a minimum, separated from the region of
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Figure 2.1: (a) Energy functional per particle for an isotropic harmonic trap in units of h̄ω, with
gaussian ansatz for the single-particle wavefunction, plotted as a function of the gaussian width pa-
rameter β. The various curves correspond to the indicated values of the dimensionless parameter
γ = (N − 1)a/

√
2πb. (b) Solutions of equation (2.10) for the indicated values of γ. The straight lines

correspond to the left-hand side of the equation, and the β values of the solutions (extrema of 〈E〉(x))
are determined by their intercepts with the fifth order parabola representing the right hand side.

collapse by a kinetic energy “barrier” which decreases as γ becomes more negative until it disappears
for γ below about 0.25. For given trap frequency and (negative) scattering length, this implies the
prediction of “meta-stable” solutions for N smaller than some critical number of particles Nc in the
trap, which depends on the values of a and b. The gaussian approximation to the single-particle
wavefunction for the meta-stable state can be found from the extremum condition obtained by by
setting the derivative of (2.8) with respect to x ≡ β/b equal to zero. One finds

1

2x3
+

γ

x4
=
x

2
or x+ 2γ = x5 , x > 0 . (2.10)

The graphical solution of this last equation is shown in fig. 2.1 (b) for the same negative values of
γ shown in the part (a) of the figure. Also included is the case of a repulsive effective two-body
interaction with γ = 5. The value of β which minimizes the gaussian approximation to the energy
functional is smaller than the trap oscillator parameter b for a < 0 and larger than b for a > 0,
consistently with the attractive and repulsive character of the mean field.
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These features are not just artifacts of the gaussian ansatz, but are preserved in unconstrained
studies[14] of the energy functional. Calculated values e.g. for the critical number Nc associated with
the loss of the secondary minimum in the case of attractive two-body interactions are consistent with
experimentally measured condensate populations.

Assuming the effective two-body potential to have repulsive character, i.e., for λ > 0, it has been
proven[15] that the energy functional (2.7) has an absolute minimum which defines a single-particle
wavefunction ϕ0(~r) up to an overall phase factor, which can always be chosen so that ϕ0(~r) is strictly
positive. This wavefunction is a solution of a nonlinear, Hartree-like equation obtained by variation of
the energy functional with respect to ϕ(~r), the normalization constraint being taken care of in terms
of a Lagrange multiplier η. It reads

(

− h̄
2∇2

2M
+ V (~r)

)

ϕ(~r) + λ(N − 1)|ϕ(~r)|2ϕ(~r) =
η

N
ϕ(~r) (2.11)

and is known as the Gross-Pitaevski equation. Accordingly, the energy functional (2.7) has been
called the Gross-Pitaevski functional, and the many-body state |Φ〉 constructed from its minimizer
(for repulsive effective interaction) the Gross-Pitaevski ground-state. The Lagrange multiplier η is
seen to be a Hartree-like single particle energy. Its relation to the value of the functional for the
corresponding single-particle wavefunction is easily obtained multiplying the Gross-Pitaevski equation
by the (conjugate) wavefunction and integrating over ~r. It can be expressed in either of two forms,
also familiar from the relation between Hartree single-particle energies and the total Hartree mean
energy

η = E [ϕ(~r)] +
λ

2
N(N − 1)

∫

d3r |ϕ(~r)|4 =

= 2E [ϕ(~r)] −N

∫

d3r ϕ∗(~r)

(

− h̄
2∇2

2M
+ V (~r)

)

ϕ(~r). (2.12)

The integral appearing in the first of these two forms is in fact an integral of the squared single-particle
density, which can therefore be interpreted as the average single-particle density associated with the
single-particle wavefunction ϕ(~r). Furthermore, if the factor N(N − 1) is replaced by N 2 in the
Gross-Pitaevski functional, and the factor (N−1) is consistently replaced by N in the Gross-Pitaevski
equation (2.11) (an essentially innocuous replacement for large N), one can write

η

N
=
∂E [ϕ(~r)]

∂N
≡ µ

which accounts for the fact that this quantity is interpreted as the chemical potential.
It should be stressed at this point that this “mean field” treatment differs from an ordinary

Hartree approximation in that the effective two-body interaction is related to the two-body scattering

amplitude rather that to the two-body potential, which is actually involved to all orders in veff . Thus
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it should be rather understood as an approximation of the Brueckner-Hartree type, widely used in
the context of nuclear physics[16], further restricted by the scattering length limit used to obtain the
effective two-body interaction. Thus, considerable care and judgment are indispensable when using
the effective hamiltonian (2.4) in dynamical situations. In particular, the physics involved in the
fate of the “collapsing” condensate with attractive effective interactions lies entirely beyond the most
optimistically drawn theoretical horizon of this effective hamiltonian, even though the observed meta-
stability and its limits may still be meaningfully assessed. Also beyond this horizon is the physics of
three-body recombination processes, and therefore also the instability of the Gross-Pitaevski ground
state under such processes.

2.2.1 The uniform gas and the “healing length”

Here and in the following subsection we consider some properties of solutions in the case of a repulsive
effective two-body approximation (a > 0). The energy of the Gross-Pitaevski ground state is given by
the minimum value of the energy functional, which can be expressed using relations (2.12) as

E [ϕ0(~r)] = η0 −
λ

2
N(N − 1)

∫

d3r |ϕ0(~r)|4 =

=
1

2

[

η0 +N

∫

d3r ϕ∗
0(~r)

(

− h̄
2∇2

2M
+ V (~r)

)

ϕ0(~r)

]

(2.13)

where η0/N is the chemical potential associated with the minimizer function ϕ0(~r). To obtain this
energy one has in general to solve the Gross-Pitaevsli equation, now a standard numerical task[14].

In the special case of a uniform gas (for which the potential V (~r) representing the trap vanishes
identically) translational invariance requires the solutions to be plane waves, so that the ground state
energy can be evaluated analytically. Using periodical boundary conditions in a volume L3, eq. (2.11)
gives for a plane wave of momentum ~k normalized in the quantization volume

h̄2k2

2M
+ λ

(N − 1)

L3
=

η

N
,

where N is the number of bosons in volume L3. Now the second form of the expression (2.13) for the
energy shows that the minimizer in this case is the plane wave with zero momentum. Note that this
satisfies the stated general properties of the minimizer. The ground state energy is therefore

E0 =
1

2
λ
N(N − 1)

L3
= N × 4π

h̄2

2M
ρP a.

In the last step the expression of λ in terms of the scattering length has been used, together with the
replacement (N − 1)/L3 → N/L3 = ρP , here fully allowed by the thermodinamic limit.

An interesting feature of this result is that it reveals a new length parameter which is relevant for
the non-ideal gas, given by
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ξH ≡ 1√
4π ρP a

, (2.14)

in terms of which the ground state energy per particle of the uniform gas is given as E0/N = h̄2/2Mξ2H .
It is referred to as the healing length, or also, alternatively, as the de Broglie wavelength (which however
should not be confused with the thermal de Broglie wavelength λdB introduced earlier). In order to
understand its meaning, consider the Gross-Pitaevski ground state in semi-infinite space x > 0, with
an infinite potential wall at x = 0. This requires that the wavefunction vanishes for x = 0, being
otherwise a solution of

− h̄2

2M
∇2ϕ0(~r) + λ|ϕ0(~r)|2ϕ0(~r) = µϕ0(~r) , ~r ≡ {x, y, z}, x > 0.

The factor (N − 1) has been absorbed in the normalization of the wavefunction by requiring that

|ϕ0(~r)|2 x→∞−→ ρP .

The relevant solution to this equation can be found by using the ansatz

ϕ0(~r) =
√
ρP tanh κx , x > 0 ,

independent of y and z, which satisfies the required boundary condition at x = 0 as well as the
prescribed normalization condition. In fact, substitution into the equation shows that it is satisfied
provided κ is chosen so that

κ2 = λ
M

h̄2 ρP or κ =

√

λMρP

h̄2 =
√

4πρP a =
1

ξH

with µ = h̄2κ2/M . The length ξH therefore characterizes the scale at which the effect of the potential
wall “heals”, as one moves away from it and the density approaches its asymptotic value.

There are therefore three distinct scales of length which are relevant in the case of the (uniform)
gas, namely the interaction length characterized by a, the mean interparticle distance characterized

by ρ
−1/3
P and the healing length, characterized by (ρP a)

−1/2. For a dilute gas one has ρP a
3 ¿ 1, so

that a¿ ρ
−1/3
P . Diluteness also implies, moreover, that

ρ
−1/3
P

(ρP a)−1/2
=
√

ρp a3 ¿ 1

so that in the limit of a dilute gas one has the hierarchy of length scales

a ¿ ρ
−1/3
P ¿ ξH ∼ (ρP a)

−1/2. (2.15)
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2.2.2 The Thomas-Fermi regime

The values of the parameter γ, eq. (2.9), which can be currently be achieved in condensates of atoms
with positive scattering length can easily be large compared to one. As an example, a condensate
of 106 atoms of 87Rb, for which a ' 100rB (rB being the Bohr radius), in an harmonic trap with
frequency ν = 100 Hz, one gets γ ' 300. In such cases not only the condensate becomes quite
appreciably wider than the gaussian corresponding to the ground state wavefunction of the trap (see
fig. 2.1 (b)), but the contribution of the kinetic energy term to the Gross-Pitaevski functional becomes
small in comparison with the sum of the contributions due to the trap potential and to the two-body
interaction. In this case a fair approximation consists in dropping the kinetic energy term altogether.
As far as the minimizer of the functional is concerned, this approximation amounts to treating the
condensate as being “locally uniform” with a position dependent density, and is therefore known as
the Thomas-Fermi approximation to the Gross-Pitaevski functional. It reads

ETF [ϕ(~r)] = N

∫

d3r ϕ∗(~r)V (~r)ϕ(~r) +
λ

2
N2

∫

d3r |ϕ(~r)|4.

Note that the factor N(N − 1) has been replaced by N 2 in the two-body term. This approximation
clearly breaks down near the outer edge of the minimizer wavefunction, where the two retained terms
become small. However, for large enough values of γ, kinetic energy corrections to ϕ(~r) are small even
there, on the scale of its peak value.

The equation satisfied by the minimizer of the Thomas-Fermi approximation to the energy func-
tional can again be obtained by variation of ETF with respect to ϕ(~r) with the appropriate Lagrange
multiplier µ to take the normalization condition into account. One gets (cf. eq. (2.11))

(

µ− V (~r) −Nλ|ϕ(~r)|2
)

ϕ(~r) = 0

which is just an algebraic equation that can be readily solved to give

|ϕ(~r)|2 =











µ−V (~r)
Nλ for µ > V (~r)

0 for µ ≤ V (~r).

Note that this solution has a discontinuous derivative at points ~r such that µ = V (~r). The effect of the
neglected kinetic energy term is essentially to smoothen the minimizer wavefunction in the vicinity
of these points[17]. The value of the Lagrange multiplier µ is determined from the normalization
condition

∫

d3r |ϕ(~r)|2 = 1 or

∫

µ>V (~r)
d3r

µ− V (~r)

λ
= N.
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2.3 Spin-dependent effective interaction

Present day traps can be set in ways which do not rely on hyperfine Zeeman displacements for their
operation (as is the case with magnetic traps), allowing for the use of atomic spins as active internal
dynamical variables of the many-boson gas. Bose-Einstein condensation in such systems results in
what is generally called “spinor condensates”.

The atomic spin f results from the coupling of the nuclear spin with the electronic spin, both of
which have half-integer values in the case of the alkali atoms. The nuclei of these atoms have odd
charge number Z, so that the isotopes corresponding to bosonic atoms must have an even number of
neutrons and therefore odd mass numbers. Their lowest electronic configuration has spin 1

2 due to
shell effects, and therefore larger values of f occur for the atoms with larger nuclear spin. The only
stable cesium isotope has mass number 133 and nuclear spin 7

2 , so that the lowest atomic hyperfine
levels have f = 3 and f = 4. 23Na and 87Rb are spin 3

2 nuclei, so that they have f values of 1 and 2,
and 85Rb has nuclear spin 5

2 and f values of 2 and 3.
The two-body effective interaction between atoms with spin f 6= 0 will in general be spin dependent,

the spin dependence being however subjected to restrictions based on general symmetry arguments,
such as rotational as well as translational invariance. Interactions being restricted to s-waves, rota-
tional invariance amounts to the conservation of the total spin of the interacting pair, and the exchange
symmetry required by Bose-Einstein statistics restricts the allowed values of the total spin to even
values. This restriction follows from the symmetry property of Clebsch-Gordan coefficients coupling
two spins f to total spin S

C f f S
m1m2M

= (−1)f+f−S C f f S
m2m1M

, M = m1 +m2, −f ≤ mi ≤ f, −S ≤M ≤ S.

An often used parameterization[19] of the effective, spin dependent two-body interaction consists
therefore in generalizing eq. (2.3) by allowing for different scattering lengths for each of the possible
(even) values of the total spin S. This implies two scattering lengths for f = 1, three for f = 2, etc.
Numbers for these parameters are experimentally poorly known (if at all) especially for atoms with
the higher f values. In regard to simplicity we restrict the following treatment to a spin dependence
which is given in terms of just the standard scalar bilinear in the two spin operators, and generalize
eq. (2.3) by writing

veff(~r1, ~F1, ~r2, ~F2) =

(

λ0 +
λs

h̄2
~F1 · ~F2

)

δ(~r1 − ~r2) (2.16)

where ~Fi, i = 1, 2 are the spin operators for the interacting bosons and the constants λ0 and λs
account for possibly different scattering lengths for different values of the total spin. This particular
form involves only two independent parameters, even though e.g. for f ≥ 2 it gives f + 1 different
scattering lengths. Of course the relation among them implied by the two-parameter interaction can
in principle be checked experimentally. The two independent scattering lengths a0 and a2 which are
allowed for f = 1, corresponding respectively to S = 0 and S = 2, can always be accommodated in
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the form (2.16), which therefore implies no restriction in this case. Their relation to the parameters
λ0 and λs is then

λ0 =
4πh̄2(a0 + 2a2)

3M
and λs =

4πh̄2(a2 − a0)

3M
,

so that when a0 = a2 one recovers a spin independent effective interaction. For f = 1 states of 23Na
one calculates[18] a positive λs which is of the order of 10% of λ0, corresponding to a rather weak spin
dependence. The value of ā = (a0 + 2a2)/3 in this case is about 50 Bohr radii.

In oder to handle the spin variable in a second-quantized formulation one considers a spinor set of
field operators ψ†

m(~r), ψm(~r), −f ≤ m ≤ f satisfying the commutation relations

[ψm(~r), ψ†
m′(~r

′)] = δmm′δ(~r − ~r ′) , [ψm(~r), ψm′(~r ′)] = 0 .

What is understood by the qualification “spinor set” is the fact that the 2f+1 different m-components
transform under rotations as a Racah tensor of rank f . The resulting second-quantized form for a set
of spinor bosons with spin f can therefore be written as a sum of one- and two-body parts as

Heff =

∫

d3r (H1(~r) + H2(~r)) (2.17)

with the hamiltonian densities

H1(~r) =
∑

m1m′
1

ψ†
m1

(~r)

[

− h̄
2∇2

2M
δm1m′

1
+ Vm1m′

1
(~r)

]

ψm′
1
(~r)

and

H2(~r) =
∑

m1m′
1
m2m′

2

[

λ0

2
δm1m′

1
δm2m′

2
+

λs

2h̄2
~Fm1m′

1
· ~Fm2m′

2

]

ψ†
m1

(~r)ψ†
m2

(~r)ψm′
1
(~r)ψm′

2
(~r).

In the one-body part, the trap potential Vmm′(~r) is, in the simplest case, not only spin-diagonal
but also spin independent, V (~r)δmm′ . As written, it may include as well an arbitrary (but time-
independent) external magnetic field. In the two-body part, the matrix elements of the 1-particle spin
operators, ~Fmm′ can be written quite generally (i.e., for arbitrary spin f) in terms of Clebsch-Gordan
coefficients and of a reduced matrix element. In terms of the spherical components

F0 ≡ Fz, F±1 ≡ ∓Fx ± iFy√
2

,

one has, by the Wigner-Eckart theorem

(Fσ)mm′ ≡ 〈fm|Fσ|fm′〉 =
C f 1 f
m′ σ m√
2f + 1

〈f‖F‖f〉

where the C symbol is a Clebsch-Gordan coefficient and last factor is the reduced matrix element. It
can be calculated from the same formula and the choice of making Fz diagonal, with eigenvalues h̄m.
Thus, for f = 1, 〈1‖F‖1〉 =

√
6h̄.
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2.3.1 Gross-Pitaevski and Thomas-Fermi treatments

An effective mean-field treatment of spinor condensates can be obtained by a straightforward gen-
eralization of what has been done in section 2.2. Again we use an ansatz the normalized N -boson
state

|N〉 =
1√
N !
a†N |0〉 (2.18)

where now a† is a spinor creation operator defined as

a† ≡
∑

m

∫

d3r um(~r)ψ†
m(~r) (2.19)

with the normalization condition
∑

m

∫

d3r |um(~r)|2 = 1.

This implies that the single-particle wavefunction ϕ(~r) is now a spinor wavefunction with 2f + 1
components um(~r), −f ≤ m ≤ f . Since ψm(~r)|N〉 =

√
Num(~r)|N − 1〉 one obtains for the energy

functional

E [ϕ(~r)] ≡ 〈N |Heff |N〉 = N
∑

m1m′
1

∫

d3r u∗m1
(~r)

(

− h̄
2∇2

2M
δm1m′

1
+ Vm1m′

1
(~r)

)

um′
1
(~r) +

+ N(N − 1)
λ0

2

∑

m1m2

∫

d3r |um1
(~r)|2|um2

(~r)|2 + (2.20)

+
N(N − 1)λs

2h̄2

∑

m1m′
1
m2m′

2

∫

d3r um1
(~r)um2

(~r)um′
1
(~r)um′

2
(~r) ~Fm1m′

1
· ~Fm2m′

2
.

The variational condition that determines the spinor component functions um(~r) is

δ

(

〈N |Heff |N〉 − η
∑

m

〈um|um〉
)

= 0,

variations being taken with respect to the um(~r). The term involving the Lagrange multiplier η
accounts for the normalization condition on the spinor state. This leads to the coupled nonlinear
equations

− h̄
2∇2

2M
um(~r) +

∑

m′

Vmm′(~r)um′(~r) + (N − 1)λ0

∑

m′

|um′(~r)|2um(~r) + (2.21)

+
(N − 1)λs

h̄2

∑

m′m1m′
1

~Fmm′ · ~Fm1m′
1
u∗m1

(~r)um′
1
(~r)um′(~r) =

η

N
um(~r).
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The factors N − 1 are usually replaced by N . In the Thomas-Fermi limit, the kinetic energy term
is negligible and the determination of the spinor component functions is again pointwise algebraic.
Recall that the trap potential Vmm′(~r) is, in the simplest case, not only spin-diagonal but also spin
independent; as written, it may include as well an arbitrary (but time-independent) external magnetic
field. The spin dependent term involves the operator

~Fmm′ · ~Fm1m′
1

=
〈f‖F‖f〉2

2f + 1

∑

σ

(−1)σC f 1 f
m′ σ mC

f 1 f
m′

1
−σ m1

.

In fact there is no sum over σ, since its value is determined by the consistent values of the remaining
m’s.

As an example, we write down explicitly the coupled Thomas-Fermi equations for f = 1 bosons
in a spin-diagonal trap potential Vmm′(~r) → Vm(~r)δmm′ . The m-dependence of the potential may be
used, in particular, to account for the first order Zeeman splitting due to a uniform external magnetic
field, i.e. Vm(~r) = V0(~r) +m∆B. We get

~Fmm′ · ~Fm1m′
1

= 2h̄2 (−1)σC 1 1 1
m′ σ mC

1 1 1
m′

1
−σ m1

with σ = m −m′ = m′
1 −m1, which includes a condition on the possible sets of m-values that give

nonzero contribution. Ignoring the kinetic energy term then gives the coupled Thomas-Fermi equations
for the spinor component wavefunctions um(~r), m = 0, ±1

[

η

N
− V1(~r) − (N − 1)(λ0 + λs)ρT (~r)

]

u1(~r) = (N − 1)λs
[

u∗−1(~r)u
2
0(~r) − 2|u−1(~r)|2u1(~r)

]

[

η

N
− V0(~r) − (N − 1)(λ0 + λs)ρT (~r)

]

u0(~r) = (N − 1)λs
[

2u∗0(~r)u1(~r)u−1(~r) − |u0(~r)|2u0(~r)
]

[

η

N
− V−1(~r) − (N − 1)(λ0 + λs)ρT (~r)

]

u−1(~r) = (N − 1)λs
[

u∗1(~r)u
2
0(~r) − 2|u1(~r)|2u−1(~r)

]

where1 ρT (~r) ≡∑

m |um(~r)|2.
Assuming that the um(~r) are real except for an overall phase, i.e.,

um(~r) = |um(~r)|eiϕm ,

1Strictly speaking one should take into account the fact that when the one-body part of the hamiltonian is diagonal
in the spin projections the quantity N̂1 − N̂−1 is also conserved, requiring a second Lagrange multiplier Λ. The effect
of this is to replace η/N respectively by η/N + Λ, η/N and η/N − Λ in the three coupled equations above. When the
m-dependence of the trap potential comes from an overall first order Zeeman shift ∆B , this is in turn equivalent to a
redefinition of the Zeeman shift ∆B → ∆′

B = ∆B + Λ. The solutions obtained without explicitly introducing Λ and
interpreting ∆B as the actual first order Zeeman shift correspond therefore to the value of the second conserved quantity
for which Λ = 0.
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the equations become real except for a phase ±(2ϕ0−ϕ1−ϕ−1) multiplying the first terms on the right-
hand side. In this way, the equations become real if this phase is 0 or π. In general, this indicates that
this approximation is sensitive to phase relations among the spinor components. Further understanding
of the phases results from consideration of the Thomas-Fermi approximation to the energy functional
per particle (2.20), which is sensitive to the same combination of phases. It is given by

ETF [ϕ(~r)] = N
∑

m

∫

d3r u∗m(~r)Vm(~r)um(~r) +
N(N − 1)λ0

2

∑

mm′

∫

d3r |um(~r)|2|um′(~r)|2 +

(2.22)

+
N(N − 1)λs

2h̄2

∑

m1m′
1
m2m′

2

∫

d3r u∗m′
1
(~r)u∗m′

2
(~r)um1

(~r)um2
(~r) ~Fm1m′

1
· ~Fm2m′

2
.

The spin-dependent term is, writing explicitly the weights resulting from the spin matrix elements,

N(N − 1)λs

∫

d3r

[

1

2

(

|u1|4 + |u−1|4
)

+ |u0|2
(

|u1|2 + |u−1|2
)

− |u1|2|u−1|2 + 2 Re (u∗20 u1u−1)

]

,

the last term of which becomes, under the assumptions made above concerning the phases,

2 Re (u∗20 u1u−1) → 2 cos(ϕ1 + ϕ−1 − 2ϕ0)|u0|2|u1||u−1|

This gives in fact an explicit expression for the Thomas-Fermi approximation to the energy functional
under the somewhat more restrictive ansatz in which the um(~r) are real except for an ~r-independent
phase, therefore only allowing for ~r-independent phase relations among the spinor components. At
points where neither of the amplitudes um(~r) is zero, the functional is stationary with respect to phase
variations at

2ϕ0 − ϕ1 − ϕ−1 = 0 or 2ϕ0 − ϕ1 − ϕ−1 = π.

The occurrence of this particular combination of the three phases results from conservation of the third
component of the total spin of two interacting bosons, which allows for converting one m1 = m2 = 0
pair into a m1 = 1, m2 = −1 pair and vice-versa. Variation with respect to the (absolute values of
the) amplitudes yields the Thomas-Fermi equations as written before, with the adopted choice for the
phase (2ϕ0 − ϕ1 − ϕ−1).

Thomas-Fermi solutions for spinor condensates are much richer than what one obtains in the case
of a single component. One of the simplest examples (albeit involving parameter values which are
rather unrealistic in experimental terms) is shown in fig 2.2. Actually two mutually complementary
solutions are shown in this figure. In the first one, the m = 0 density vanishes identically, and a
Zeeman induced relative enhancement of the m = 1 density increases towards the surface to the point
where the m = −1 density vanishes. At this point the m = 1 density joins a different solution which
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Figure 2.2: Solutions of the T-F
equations for sodium atoms in a
spherical harmonic trap with fre-
quency 60 Hz, µ = 104 Hz and
∆B = −70 Hz. Note that this
last value corresponds to an experi-
mentally unrealistic extremely weak
magnetic field, of the order of 10−4

G. The two-body interaction pa-
rameters used were λ0 = 14.5 Hz
µm3 (ā ' 50 aB) and λS = 0.3 Hz
µm3 (a2 − a0 ' 3 aB).
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has u0 = u−1 ≡ 0, shown as the dashed line. This latter solution is unstable (in the sense that it
corresponds to a maximum of the Thomas-Fermi energy functional) while u−1(r) 6= 0 (for the first
solution), but becomes stable (in the sense that it becomes associated to a minimum of the Thomas-
Fermi energy functional) in the outer skin, so that it may be seen as the extension of the corresponding
component of the first solution for larger values of r.

It should be noted that the phase-carrying quantity 2 Re (u∗20 u1u−1) vanishes identically, so that
the overall relative phase of the two nonvanishing components of the spinor is not determined. This
plain computational fact must be understood as a warning against too stringent limitations imposed
by the adopted ansatz (2.18) and (2.19), which prevent physics intended by the effective hamiltonian
to be captured by the effective mean-field approximation as implemented.

In order to justify this statement, consider again the spin-dependent effective hamiltonian (2.17)
for the case f = 1 with the trap potential reduced to a position independent first order Zeeman shift,
i.e.

Vmm′(~r) −→ m∆B δmm′ .

Corresponding to the neglect of the kinetic energy term in the Thomas-Fermi approximation, introduce
the momentum state operators (using periodic boundary conditions in a quantization volume V)

am(~k) ≡ 1

V

∫

V
d3r ei

~k·~rψm(~r) , −1 ≤ m ≤ 1
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and restrict the hamiltonian to the zero-momentum plane waves. The resulting truncated version of
the effective hamiltonian is then (cf. [20, 21])

Heff → H0 = ∆B

∑

m

ma†mam +
λ0

2V
∑

mm′

a†ma
†
m′am′am +

+
λs
2V

(

a†1a
†
1a1a1 + a†−1a

†
−1a−1a−1 + 2a†1a

†
0a0a1 + 2a†−1a

†
0a0a−1 −

−2a†−1a
†
1a1a−1 + 2a†0a

†
0a1a−1 + 2a†1a

†
−1a0a0

)

=

= ∆BŜz +
λ0

2V N̂(N̂ − 1) +
λs
2V

(

~S2 − 2N̂
)

(2.23)

where the am, a†m are now zero momentum operators, N̂m ≡ a†mam, N̂ ≡∑

m N̂m are number operators
and ~S ≡ {Ŝx, Ŝy, Ŝz} is the total spin operator the components of which, for f = 1, can be written as

Ŝx + iŜy =
√

2(a†0a1 + a†−1a0), Ŝx − iŜy =
√

2(a†1a0 + a†0a−1), Ŝz = (a†−1a−1 − a†1a1).

Contact with the preceding Thomas-Fermi treatment can be made by noting that the integrand of
the Thomas-Fermi energy functional (2.22) can be obtained from this hamiltonian (up to replacement
of factors N(N − 1) by N 2) using the spinor ansatz

|Φ〉 ≡







|ν1〉
|ν0〉
|ν−1〉






,

1
∑

m=−1

|νm|2 = N

where the |νm〉 are coherent states[1] for the operators am, i.e.

|νm〉 ≡ eνma
†
m−ν∗mam |0〉 , am|νm〉 = νm|νm〉 = |νm|eiϕm |νm〉 ,

where |0〉 stands for the vacuum state, am|0〉 = 0. A variational treatment therefore leads again to the
Thomas-Fermi coupled equations, now written in terms of the coherent amplitudes νm. The possible
solution having ν0 = 0 leaves the relative phase of the remaining two amplitudes undefined.

One can now however confront the approximation involving this ansatz with the exact ground
state of the truncated hamiltonian (2.23) by taking advantage of its expression in terms of number
and total spin operators. To see what this ground state is, note that N̂ , ~S2 and Ŝz are commuting
operators, so that the simultaneous eigenvectors |NSM〉 of these three operators are eigenstates of
H0. The angular momentum commutation relations for the components of the total spin operator give
as usual

~S2|NSM〉 = S(S + 1)|NSM〉 , Ŝz|NSM〉 = M |NSM〉 , −S ≤M ≤ S ;
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moreover S ≤ M ≤ N so that the maximum value of the total spin is S = N . The eigenvalues of H0

are then

H0|NSM〉 =

(

∆BM +
λ0

V N(N − 1) +
λs
V [S(S + 1) − 2N ]

)

|NSM〉.

The ground state corresponds to available values of S and M which minimize the eigenvalue of H0.
When λS > 0 (as in the example of fig. 2.2) a reduction of S with respect to its maximum value will
be favored if ∆B is not too large.

Except for the simplest “stretched” angular momentum states with S = N , M = ±N the states
|NSM〉 involve spin correlations that cannot be properly represented in terms of the spinor ansatz.
They can in fact be written explicitly in terms of the operators a†m. When M = −S they are given by

|N S M = −S〉 = NNS a
†S
−1

(

a† 2
0 − 2a†1a

†
−1

)(N−S)/2
|0〉

where the correlations are clearly visible in the operator within brackets, which creates a pair of bosons
coupled to zero total spin. The normalization factor NNS is[21]

NNS =

[

2(N−S)/2
(

N − S

2

)

! S !
(N + S + 1) ! !

(2S + 1) ! !

]−1/2

.

States with other values of M can of course be obtained from these by using the total spin projection
raising operator Ŝ+ ≡ Ŝx + iŜy.

The difficulty found in the guise of an undetermined relative phase when using the simple spinor
mean-field ansatz in connection with the spin dependence of the effective two-body interaction reflects
therefore the inability of this ansatz to capture essential spin correlations. It should be noted, on
the other hand, that the “exact” treatment reviewed here to pinpoint this fact ignored the possible
concomitant role of the position degrees of freedom, which are crucial when considering a trapped
system of bosons. A better treatment for this type of system should therefore be able to handle both
of these aspects dynamically at the same time. Treatments such as that of refs. [20], which merely
replace the zero-momentum plane wave used here by one however judiciously chosen frozen single
particle wavefunction of course fall short of this aim.

2.4 Gross-Pitaevski limit

The understanding of the success of the Gross-Pitaevski (G-P) treatment of trapped, dilute atomic
condensates has acquired a new facet since the discovery was announced late in 2001, by Lieb and
Seiringer[22] (see also[23]), of important results concerning the ground state of a dilute boson gas with
repulsive two-body interactions in a rather peculiar limit to which the accumulated G-P successes are
in some sense close. This limit, to be called the Gross-Pitaevski limit for reasons that will become
clear shortly, differs from the usual thermodynamic limit, which consists in letting the volume go to
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infinity at constant density. Thus, if the system under consideration is constituted of a given species
of bosonic atoms, associated with a scattering length a > 0, the thermodynamic limit implies its
characterization in terms of a given value of the quantity ρPa

3. The uniform Gross-Pitaevski ground
state of this system is the minimizer of the G-P functional, which satisfies the equation

− h̄2

2M
∇2ϕ(~r) +

4πh̄2a

M
|ϕ(~r)|2ϕ(~r) = µϕ(~r)

with periodic boundary conditions in volume V, the function ϕ(~r) being normalized according to

∫

V
d3r |ϕ(~r)|2 = N,

N

V = ρ.

The minimizer in this case is just the constant (zero momentum) solution with particle density ρP . It
is given explicitly by

|ϕ|2 =
µM

4πh̄2a
=
N

V or µ =
4πh̄2Na

MV .

When one thinks in terms of the thermodynamic limit, this gives the proportionality of the G-P
chemical potential µ on the system density through the effective contact interaction involving the
scattering length a (the energy per particle is in this case just µ/2). On the other hand, it also
shows that the constant G-P solution remains invariant under a scaling quite unrelated to that which
is associated to the thermodynamic limit, namely, when the density and the scattering length are
changed in such a way that the product Na, and also the quantization volume V, remain constant. It
is easy to see that the G-P functional itself remains unchanged under this type of scaling. The Gross-
Pitaevski limit consists in letting N → ∞ with Na constant, so that the scattering length a → 0 as
N−1 and ρa3 → 0 as N−2. This limit corresponds therefore to an extremely dilute (even though the
particle density diverges linearly with N) and yet non trivial limit, even though the strength of the
effective interaction goes to zero.

The special relevance of this particular limit comes from the proof given by Lieb and Seiringer
that, when it is taken, the above G-P ground-state solution becomes exact, i.e., the exact ground state
of the full many-body problem. The two-body interaction is given as a two-body potential having
suitable properties, besides giving the correct scattering length a > 0, a sufficient condition for the
proof being that it is everywhere positive (e.g. a pure hard core potential with core radius a). This
is of course “unrealistic”, but real condensates are in fact systems not in their ground states, but in
meta-stable states which are however rendered stable by the unrealistic assumption, and supposedly
without important collateral effects. The fact that the G-P solution is exact implies, in particular, that
the exact ground state is of the simple product form (2.6). This means that the G-P limit eliminates
all many-particle correlations induced by the two-particle interaction from the wavefunction. In this
sense, the G-P limit is “many-body trivial”, even though it differs from an ideal gas in several (one-
body) ways (e.g. in the energy per particle). Another side effect of the proof is that it provides for
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a justification of the adopted form of the two-body effective interaction used in connection with the
G-P functional at least for purely repulsive two-body potentials. Note that for this type of potential
the scattering length is always positive.

It is important to stress here that the result of Lieb and Seiringer depends in an essential way on the
G-P functional not corresponding to a plain mean field approximation of the Hartree type, but rather
to an effective mean field approximation which at best can be described as being of the Brueckner
type, as emphasized earlier. The exactness of the product wavefunction based on the minimizer of
the functional does not hold if the effective two-body interaction is replaced by the actual two-body
interaction potential.

The scaling property relevant for the Gross-Pitaevski limit holds also for trapped bosons, in which
case the equation for the minimizer of the Gross-Pitaevski functional reads

[

− h̄2

2M
∇2 + V (~r)

]

ϕ(~r) +
4πh̄2a

M
|ϕ(~r)|2ϕ(~r) = µϕ(~r).

Due to the presence of the trapping external potential V (~r) the relevant solution is normalizable. Since
the solution ϕN,a(~r) for the case of N trapped bosons and scattering length a is also assumed to be
normalized according to

∫

d3r |ϕN,a(~r)|2 = N ,

it changes under scale transformations N → N/ξ, a → ξa that leave the product Na fixed according
to

ϕN,a(~r) =
1√
ξ
ϕN

ξ
,aξ(~r).

In this case the G-P density is of course not uniform, and keeps a fixed “geometry” under G-P scaling.
It also becomes exact in the G-P limit, so that in this limit the trapped system ground state is also
“many-body trivial”, even though not ideal.

The successes of descriptions based on the G-P approximation can be associated with proximity
of the relevant experimental parameters to this particular limit, in which important interaction effects
survive in the condensate geometry, while correlation effects are in some sense negligibly small (and
vanish rigorously in the G-P limit). Typical values for experimentally achieved condensates are a ∼
10−7 cm, N ∼ 105, ρP ∼ 1015 cm−3, which correspond to ρPa

3 ∼ 10−6, ρ
−1/3
P ∼ 10−5 cm and healing

length ξH = (ρPa)
−1/2 ∼ 10−4 cm. One has thus typically the characteristic three-lengths hierarchy

(2.15) of a dilute system. In the G- P limit (a → 0 with Na constant) this hierarchy is strengthened
as can be seen through the N -dependence of the various lengths:

a¿ ρ
− 1

3

P ¿ ξH = (ρPa)
− 1

2 =⇒ O
(

1

N

)

¿ O
(

1

N1/3

)

¿ O
(

N0
)

.
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Chapter 3

Roles for atomic structure

When discussing the condensation process from a theoretical point of view, the atoms which constitute
the gas are treated as identical bosons, possibly endowed with nonzero spin but otherwise “structure-
less” objects. This picture is of course completely inadequate for practical purposes relating e.g. to
the achievement of confinement, cooling and condensation of the bosonic gas, since each of these oper-
ations takes advantage of internal atomic degrees of freedom for its implementation in the laboratory.
This is of course a rich and challenging field of its own, which we will not consider here, however. The
topics included in this chapter refer instead to atomic structure properties in so far as they can be
used to control (as it is the case of the “Feshbach resonances”) or enrich (as it is the case of “hybrid
condensates” involving different atomic species, atoms and molecules, etc.) the dynamics of dilute
Bose-Einstein condensates as such, rather than just adding “theoretical realism” to the picture.

3.1 Atom-atom resonance scattering and the effective
two-body interaction

Low-energy resonances can play a decisive role in determining the atom-atom scattering length. Since
this quantity determines the effective two-body interaction to be used in connection with the Gross-
Pitaevski functional, the possibility of tuning the position in energy of narrow low-energy resonances
by means of some external control variable (such as an external magnetic field, acting through the
Zeeman shifts it produces) may allow for tuning the value of the scattering length, and hence also of the
effective two-body interaction. The resonances one is interested in here are not “shape resonances”
related to the properties of the atom-atom interaction potential, but the typically much narrower
and numerous many-body resonances associated to particular quasi-stationary states of the two-atom
system. They are therefore related in an essential way to atomic structure properties, and can be seen
as atomic analogues of the “compound nucleus” resonances of nuclear physics. One general collision
theory, which in particular gives a nice account of the effects of quasi stationary states of the compound
system on the scattering observables has been developed since the 1960’s by Feshbach[24], mostly in
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the context of nuclear physics. The use of the concepts of this particular theory in the atomic domain
has led to the denomination “Feshbach resonances” for the resonances involving internal degrees of
freedom of the atom-atom compound system. They are now widely used as a tool for achieving
experimental control of the two-body effective interaction in many experiments involving cold, dilute
atomic gases of bosons and also of fermions[2, 3, 4, 5, 25].

In the “no Feshbach resonance” case, the determination of the scattering amplitude a involves
solving the Schrödinger equation

[

E − p2

2µR
− V

]

|Ψ~k
〉 = 0 (3.1)

where ~p is the relative momentum and µR is the reduced mass of the two colliding atoms. The
interaction between the two atoms is described by the potential V , and the energy scale is set so that
this potential vanishes in the limit of very large distance between them. For simplicity we omit any
explicit consideration of spins. The center of mass energy of the colliding system is E > 0, also equal
to the asymptotic value of the kinetic energy of relative motion of the two atoms. If the pre-collision
asymptotic relative momentum is h̄~k one has therefore

E =
h̄2k2

2µR
.

The scattering state vector |Ψ~k
〉, or equivalently its associated wavefunction 〈~r|Ψ~r〉, are further deter-

mined by the usual scattering asymptotic boundary condition

〈~r|Ψ~k
〉 r→∞−→ ei

~k·~r + f(r̂)
eikr

r
(3.2)

where the argument r̂ of the scattering amplitude f denotes the angular components of the relative
position vector ~r. This boundary condition implies the plane-wave-like orthogonality relation expressed
in terms of the Dirac delta function as

〈Ψ~k
|Ψ~k′

〉 = (2π)3δ(~k − ~k′).

The scattering length is a particular way to represent the extreme low energy (meaning E → 0)
scattering amplitude, which can in general be extracted from the s-wave component 〈~r|ψ

(0)~k
〉 of the

scattering wavefunction. The asymptotic boundary condition corresponding to eq. (3.2) to be satisfied
by this particular partial wave is

〈~r|Ψ~k
〉(l=0) ≡ eiδ0(k)u0k(r)

r→∞−→ − 1

2ikr

(

e−ikr − e2iδ0(k)eikr
)

= eiδ0
sin(kr + δ0)

kr
(3.3)

which determines the s-wave phase shift δ0(k). The s-wave component of the scattering amplitude
does not depend on the angular variables and is given by
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f(l=0) =
e2iδ0(k) − 1

2ik
= eiδ0(k) sin δ0

k
.

The phase factor e2iδ0(k) is the zero angular momentum “S-matrix”, and the scattering length a is
defined as the limit

a = − lim
k→0

δ0(k)

k
, so that lim

k→0
f(l=0) = −a ,

and the large distance asymptotic behavior of the s-wave amplitude in the limit k → 0 can be expressed
in terms of the scattering length as

eiδ0u0k(r)
r→∞−→ eiδ0

sin(kr + δ0)

kr
k→0−→ 1 − a

r
.

Note furthermore that for very small values of k the zero angular momentum S-matrix can be approx-
imated as

e2iδ0(k) ' e−2ika , k ' 0.

3.1.1 Effects of internal structure dynamics

We next modify this simple low-energy elastic scattering picture to introduce the “Feshbach resonance”
syndrome[26]. When treating the elastic scattering one assumes a definite and fixed choice for the
internal states of the colliding atoms in the asymptotic region. A crucial missing ingredient is, however,
the existence of other internal states of higher energy allowing in principle for additional channels,
which allow e.g. for inelastic scattering due to internal excitation of one or both atoms. Inelastic
scattering will be energetically allowed if the energy E is large enough to leave a positive relative
kinetic energy following the excitation process, in which case the corresponding channels are “open
channels”. At energies E low enough so that all inelastic channels are “closed”, one always can in
principle describe the scattering on the basis of an equation like (3.1), but then the effects due to the
degrees of freedom involved in the closed inelastic channels have to be accounted for by the atom-atom
potential V , which in general must therefore be a complicated, energy-dependent object containing
the full internal dynamics of the two-atom compound system. In order to unravel this situation it is
preferable to consider the closed channels explicitly, as well as their coupling to the single open, elastic
channel. This is essentially what is done in the Feshbach theory.

Although realistic descriptions of the low-energy scattering of two bound many-body systems such
as two atoms can be extremely involved, some important and characteristic aspects can be captured
even in grossly simplified schematic models. Let us then consider, in addition to the lowest energy
internal asymptotic states |0〉 associated with the open elastic channel, one single excited state |ε〉 of
either atom, with excitation energy ε as measured from the ground state. We will now generalize the
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scattering problem (3.1) to deal with the scattering of such a pair of two-level atoms. The hamiltonian
governing the dynamics of the two-atom system is taken to be

H =
p2

2µR
⊗ 1 + V00 ⊗ |00〉〈00| + (V0ε + ε) ⊗ |0ε〉〈0ε| + vc ⊗ (|00〉〈0ε| + |0ε〉〈00|) . (3.4)

Note that each term has two factors, the first acting in the position coordinates of the atoms and the
second acting on the space of internal states. The vectors |00〉 and |0ε〉 correspond to respectively to
the two atoms being in the ground state |0〉 and to one atom being in the ground state, the other
being in the excited state |ε〉. Thus V00 and V0ε describe the interaction of the two atoms in each of
these two channels, while vc is an additional interaction which couples the two channels, i.e., is able
to change the internal state of one of the two atoms. The term involving ε as first factor accounts for
the energy of the internal state |0ε〉 being higher than that of |00〉.

The state-vectors of the two atom system described by this hamiltonian will, correspondingly, be
of the form

|Ψ〉 = |ψ00〉 ⊗ |00〉 + |ψ0ε〉 ⊗ |0ε〉 (3.5)

where the first factors are the position space amplitudes (or “channel amplitudes”) corresponding to
the indicates internal states of the two atoms. Thus the scattering problem we have to solve now
involves solving the Schrödinger equation

[E −H]|Ψ~k
〉 = 0

with H given by (3.4), the state |Ψ~k
〉 being of the form (3.5) and satisfying appropriate boundary

conditions.
As a first step it is easy to rewrite this equation as a set of two coupled equations for the two

channel amplitudes, by taking its scalar product successively with each of the two channel internal
states. One obtains in this way

[

E − p2

2µR
− V00

]

|ψ00〉 = vc|ψ0ε〉
[

E − ε− p2

2µR
− V0ε

]

|ψ0ε〉 = vc|ψ00〉. (3.6)

The channel potentials V00 and V0ε, and also the coupling potential vc are again assumed to vanish
at large separations of the two atoms. Thus, if the total center of mass energy E is less than ε, the
amplitude |ψ0ε〉 will behave asymptotically as a decaying exponential, indicating that this channel is
then a closed channel. Under these circumstances, the elastic scattering in the only open channel
|00〉 can be described by a single equation of the form (3.1) with an appropriate effective potential
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V , which can now be derived from the coupled equations (3.6). The second equation can be formally
solved for the closed channel amplitude giving

|ψ0ε〉 =
1

E − ε− p2

2µR
− V0ε

vc|ψ00〉 . (3.7)

Substituting this on the first equation yields



E − p2

2µR
− V00 − vc

1

E − ε− p2

2µR
− V0ε

vc



 |ψ00〉 = 0

which identifies the appropriate effective potential for elastic scattering V as the explicitly energy-
dependent object

V = V00 + vc
1

E − ε− p2

2µR
− V0ε

vc , E < ε .

The inverse operator first introduced in eq. (3.7) can be expressed with the help of the eigenvectors
of the closed channel hamiltonian p2/2µR + V0ε. At negative channel energies one can have a discrete
set of bound states |φn〉 which vanish asymptotically and satisfy

[

p2

2µR
+ V0ε

]

|φn〉 = ηn|φn〉 , ηn < 0, 〈φn|φn′〉 = δnn′

while at positive channel energies η > 0 the spectrum is continuous and the eigenstates are scattering
states |φη〉 satisfying scattering boundary conditions and the equation

[

p2

2µR
+ V0ε

]

|φη〉 = η|φη〉 , η =
h̄2k2

2µR
> 0.

The effective potential for elastic scattering can thus be written in terms of the closed channel eigen-
vectors as

V = V00 +
∑

n

vc|φn〉
1

E − ε− ηn
〈φn|vc +

1

(2π)3

∫ ∞

0
d3k vc|φη〉

1

E − ε− η
〈φη|vc , E < ε .

The denominator in the continuous spectrum part of this operator does not vanish as long as the |0ε〉
channel remains closed but, since ηn < 0, the part associated with the discrete spectrum becomes
singular at energies E such that E − ε− ηn = 0, and is very strongly energy dependent in the vicinity
of each one of these singularities.
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3.1.2 Single closed channel bound state and resonance scattering

For the sake of simplicity, let us assume that there is just one bound state |φ0〉, with eigenvalue
−ε < η0 < 0, so that a singularity in fact develops at 0 < E = E0 ≡ ε + η0 < ε, and hence in the
energy interval corresponding to pure elastic scattering. How does the singularity affect the elastic
scattering amplitude in its vicinity E ∼ E0?

In order to answer this question, note that the energy dependence coming from the contribution of
the continuous spectrum is slow in comparison with that associated with the bound state singularity.
Thus it is permissible to lump it together with the channel potential V00 and define an effective
“background” channel potential

Ṽ00 = V00 +
1

(2π)3

∫ ∞

0
d3k vc|φη〉

1

E − ε− η
〈φη|vc

which is only slowly energy dependent near E = E0. The open channel amplitude then satisfies the
equation

[

E − p2

2µR
− Ṽ00

]

|ψ
00~k

〉 = vc|φ0〉
1

E − E0
〈φ0|vc|ψ00~k

〉 (3.8)

where the asymptotic momentum ~k is related to E as usual, i.e. E = h̄2k2/2µR. This equation has to
be solved for |ψ

00~k
〉 with scattering asymptotic boundary conditions of the form (3.2).

This can be done in a variety of ways, of which we choose that which is possibly least dependent
on invoking auxiliary results from scattering theory. The first step is to note that equation (3.8) is
equivalent to the pair of coupled equations

[

E − p2

2µR
− Ṽ00

]

|ψ
00~k

〉 = vc|φ0〉α

[E − E0]α = 〈φ0|vc|ψ00~k
〉 (3.9)

since it can be recovered from them by eliminating the c-number amplitude α. The first of these
equations appears as an inhomogeneous equation which can be solved by using the appropriate Green’s
function GE of the differential operator on the left hand side as

|ψ
00~k

〉 = |χ
00~k

〉 +GE vc|φ0〉α

where |χ
00~k

〉 is a solution of the homogeneous form of the same equation. It describes elastic scattering

by the background effective potential Ṽ00 alone. Substitution into the second equation determines α
as

α =
〈φ0|vc|χ00~k

〉
E − E0 − 〈φ0|vc GE vc|φ0〉
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leading therefore to the desired solution

|ψ
00~k

〉 = |χ
00~k

〉 +GE vc|φ0〉
〈φ0|vc|χ00~k

〉
E − E0 − 〈φ0|vc GE vc|φ0〉

.

The effect of the singularity at E = E0 is entirely contained in the last term of this solution,
which shows that the singularity itself is modified by the additional, also energy dependent term
〈φ0|vc GE vc|φ0〉. In order to make the structure of this term more explicit, recall that the appropriate
Green’s function appearing there can be written as (cf. ref. [1], section 10.3)

GE =

∫

d3k′

(2π)3

[

|χ
00~k′

〉 P
E − E′

〈χ
00~k′

| − iπ|χ
00~k

〉δ(E − E′)〈χ
00~k

|
]

, E′ =
h̄2k′2

2µR

where P denotes the principal value of the singular integral and the background scattering states have
been assumed to be normalized as in eq. (3.2). This gives

〈φ0|vc GE vc|φ0〉 = P
∫

d3k′

(2π)3
|〈φ0|vc|χ00~k′

〉|2
E − E′

− iπ

∫

d3k′

(2π)3
|〈φ0|vc|χ00~k

〉|2δ(E − E′) ≡ ∆0 − i
Γ0

2
.

Note that ∆0 and Γ0 are real energy dependent quantities, their energy dependence coming from that
of the background scattering states. We are thus led to

|ψ
00~k

〉 = |χ
00~k

〉 +GEvc|φ0〉
〈φ0|vc|χ00~k

〉
E − E0 − ∆0 + iΓ0

2

. (3.10)

This solution shows that the effect of the singularity associated with the closed channel bound
state appears as an additional component in the elastic scattering state which appears multiplied by a
resonant complex factor. To the extent that the energy dependence of ∆0 and of Γ0 can be ignored, the
squared absolute value of this factor has a Breit-Wigner profile which peaks at the energy E = E0+∆0

and has a width Γ0.
The various ingredients in the seemingly elaborate expression (3.10) can actually be interpreted

in a rather transparent way. As already mentioned, the first term just represents the energy-smooth
background elastic scattering. The second term carries the resonant contribution, which results from
transitions mediated by the channel coupling interaction vc from the open channel to the of the bound
state φ0〉 in the closed channel. This is what the amplitude 〈φ0|vc|χ00~k

〉 in the numerator of this
term stands for. Once these transitions feed the bound state amplitude, it acts as a source for an
additional amplitude in the open channel, this being given by the factor involving the background
Green’s function, GEvc|φ0〉. The energy dependent denominator accounts for the dynamics of the
two-atom system while in transit through the closed channel or, in other words for the propagation of
the system through the closed channel. It contains information about the energy of the bound state
and takes into account the ever present possibility of leaking back to the open channel through the
matrix element 〈φ0|vc GE vc|φ0〉, which introduces the energy shift ∆0 and the width Γ0. The latter
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also guarantees the enforcement of the time-energy uncertainty relation. In fact, the expression for
the width can be written as

Γ0 = 2π

∫

d3k′

(2π)3
|〈φ0|vc|χ00~k′

〉|2δ(E − E′) (3.11)

so that Γ0/h̄ is just Fermi’s Golden Rule expression for the transition rate out of the closed channel
bound state to the open channel background continuum through the action of the channel coupling
interaction vc. Note however that this is here not merely a perturbative approximation, but an exact

expression.

3.1.3 Resonant phase shift in low energy scattering

Our next task will be to extract from eq. (3.10) the effects of a very low energy resonance on the
s-wave phase-shift and on the scattering amplitude. What is implied here by ’very low energy’ is the
effective suppression by their respective centrifugal barriers of all higher partial waves.

As in the case of eq. (3.3), the s-wave component of the background elastic scattering wavefunction
appearing in the expression for the width (3.11) can be written as

〈~r|χ
00~k

〉 ≡ eiδ̃0(k)ũ0k(r)
r→∞−→ eiδ̃0

sin(kr + δ̃0)

kr

where δ̃0 is the background s-wave phase shift produced by the effective potential Ṽ00 and the function
ũ0k(r) is independent of angular variables, regular at the origin and slowly varying with k. The
matrix element which appears in the expression for the width is therefore independent of the angular
components of ~k′. The energy delta function then allows one to perform the momentum integration
explicitly with the result

Γ0 =
µR

πh̄2 k |〈φ0|vc|ũ0k〉|2 ≡ 2γk

where a linear phase-space induced k-dependence has been made explicit and the newly defined “re-
duced width” parameter

γ ≡ µR

2πh̄2 |〈φ0|vc|ũ0k〉|2

is slowly varying with k. Note that this parameter has dimensions of energy times length.
We next extract an expression for the full s-wave phase shift δ0, including the resonant contribution,

from the scattering state (3.10). To this effect we use an asymptotic expression for the s-wave Green’s
function GE(l=0) written in terms of the regular background scattering solution ũ0k(r) which reads

〈r|GE(l=0)|r′〉 r→∞−→ − µR

2πh̄2

eikr

r
eiδ̃0 ũ0k(r

′)
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Figure 3.1: Resonant phase shift δR for a typical
narrow resonance as a function of the energy E.
The phase δR grows from π/4 to 3π/4 in an energy
interval of width Γ0.
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which gives, upon substitution in (3.10),

〈r|ψ00k〉 r→∞−→ − 1

2ikr

[

e−ikr − e2iδ̃0

(

1 − iΓ0

E − E0 − ∆0 + iΓ0

2

)

eikr
]

from which we can read the s-wave S-matrix as

e2iδ0 = e2iδ̃0

(

E − E0 − ∆0 − iΓ0

2

E − E0 − ∆0 + iΓ0

2

)

≡ e2iδ̃0e2iδR

where the resonant contribution δR to the phase shift is

tan δR = − Γ0/2

E − E0 − ∆0
.

The characteristic behavior of the resonant phase shift for a narrow resonance, i.e., a resonance in
which the energy dependence of Γ0 and ∆0 can be ignored (recall that this energy dependence comes
from the “background” scattering involving the open channel alone) is shown in fig. 3.1. The resonant
phase δR grows most rapidly through δR = π/2 at the energy E0 + ∆0 for which the denominator
vanishes. As the energy E sweeps across the resonance, δR grows by ∼ π, the change between π/4 and
3π/4 occurring in an energy interval of width Γ0. Our concern here is however with cases in which the
energy E0 +∆0 is close enough to zero so that one can write the phase-shift in terms of the scattering
length as δ̃0 + δR = δ0 ' −ka = −k(ã + aR), we obtain for the full scattering length, including the
resonant contribution

a = ã+ aR = ã+ lim
k →0

1

k
tan−1 Γ0/2

E − E0 − ∆0
= ã− γ

E0 + ∆0
≡ ã− γ

ε
.
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Figure 3.2: Left: typical behavior of the near resonance full scattering length when ã > 0 and ∆B > 0,
as for the resonance at B0 ' 907 G in 23Na. Right: same but for ã < 0, as for the resonance at
B0 ' 156 G in 85Rb. Note changes of sign in both cases.

The energy ε ≡ E0 + ∆0 marks the position of the resonance energy with respect to the threshold for
elastic scattering and is usually referred to in this context as the “detuning” of the resonance.

This expression for the full scattering length shows how its “background” (off-resonance) value is
affected by the resonant scattering. The parameters which determine the resonant modification of the
scattering length are the reduced width γ and the detuning ε. When the detuning is sufficiently small,
the resonant modification may be dramatic not only for the magnitude of the scattering length, but
also by changing its sign. Moreover, whenever the atomic states defining the open elastic scattering
channel and the closed channel bound state |φ0〉 have different magnetic moments, in the sense that
their energies vary differently under the influence of an external magnetic field of strength B, one can
effectively change the detuning by changing B. Thus, if ε0 is the detuning for B = 0, including the
linear Zeeman shifts, due to B 6= 0 one can write

ε = ε0 + ∆µ B

where ∆µ is an effective, difference magnetic moment measuring how the detuning varies with B as
the elastic channel threshold and the closed channel bound states react differently to this field. In this
case the full scattering length can be seen as a function of the magnetic field B

a = ã+
γ/∆µ

B0 −B
= ã

(

1 +
∆B

B0 −B

)

(3.12)

where B0 = −ε0/∆µ is the field strength at which the detuning vanishes, and ∆B ≡ γ/ã∆µ charac-
terizes the width of the resonance in terms of magnetic field strength.

Typical behaviors of the scattering length a as a function of the external magnetic field B in the
neighborhood of the field value B0 corresponding to zero detuning are shown in fig. 3.2. The case
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represented on the left corresponds to a resonance in 23Na for which B0 = 907 G and ∆B = 1 G. This
was the first Feshbach resonance to be observed through their effect on the properties of Bose-Einstein
condensates[3], which in particular confirmed a previously calculated value of the magnetic field width
parameter ∆B. In the case represented on the right of the figure the off-resonance scattering length
ã is negative, but becomes positive in a domain of values of B > B0. This situation is in fact found
in a resonance in 85Rb for which B0 = 155 G and ∆B = 11.5 G. This resonance has been studied by
means of photoassociation spectroscopy[27] and then used in an experiment to control the strength
of the effective atom-atom interaction in a cold sample of 85Rb gas above the critical temperature for
condensation[4]. By disturbing the system out of equilibrium and measuring the equilibration rate
as a function of the magnetic field, it was observed that the equilibration rate vanished at the field
value for which a = 0. This corresponds therefore to experimental realization of an ideal gas. This
same resonance has been subsequently used to obtain stable condensates of 85Rb atoms. A remarkable
property of this resonance is that it has allowed for the formation of condensates with measured values
of the scattering length in excess of as large as about 9000 Bohr radii[5].

Experimental and theoretical “Feshbach spectroscopy” studies have also been carried out for 133Cs,
motivated both by attempts at using this type of atom for Bose-Einstein condensation and by the
special role it plays as time and frequency standard[28, 29]. The scattering length for atoms in the
lowest hyperfine state has the B > B0 behavior shown on the left part of fig. 3.2, with B0 = −8
G. This negative value means that the resonant state does not cross the elastic scattering threshold
as the field is increased from zero. The scattering length varies from a ' −3000 Bohr radii at zero
magnetic field up to a ' 1000 Bohr radii at B = 55 G. It is observed to vanish for B = 17 G[28, 2].
This is therefore a very broad resonance (∆B ' 25 G) which allows for tuning the scattering length
in a very broad range with small magnetic fields. This flexibility has in fact been crucial for achieving
the Cs condensate, as it allowed to adjust the residual interaction in oder to optimize conditions for
the various steps of the cooling process. Once the condensate was formed, adjustment of the external
magnetic field to 17 G led to an experimental “ideal” condensate.

Finally, it should be noted explicitly that the property a = 0 results in fact from a cancellation
between two contributions to the scattering amplitude which are of a different nature, namely the
effective potential scattering in the elastic channel and the resonant contribution involving virtual
transfers to the closed inelastic channel and back. thus, even though the wavefunction of a scattering
pair of atoms is asymptotically indistinguishable from the wavefunction of a free pair, it is entirely
different from the latter within the interaction region. The “ideal gas” behavior results therefore from
insensitivity of the relevant properties of dilute systems to the outwardly healed interaction wounds.

3.2 Feshbach resonances and molecular condensates

The mechanism underlying Feshbach resonant effects in elastic atom-atom scattering involves the
formation of two-atom states of molecular type, which are not stationary states on account of their
coupling to the open elastic scattering channel. The most naive form of bringing this process to bear
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in the context of the many-body problem is to use the resonance modified scattering length to write
the two-body effective interaction between atoms. This is in fact what is implicitly or even explicitly
assumed in many cases, without meeting any gross inconsistencies on the experimental side.

However, it was soon realized that one should be dealing in such cases with richer many-body
dynamics, in which in the neighborhood of a Feshbach resonance a dynamic equilibrium situation may
be reached in the many-body system involving dimer formation and decay back to the elastic channel,
leading do condensates hybridized by the presence of a molecular, or dimer phase. This suggestion
has in fact been made and elaborated in terms of a definite theoretical model by Timmermans et al.
in ref. [26]. As will be discussed shortly, this model possibly leads to results which may not fully agree
with the naive point of view, signaling that at least a more detailed understanding of the atom-atom
effective interaction in the presence of resonant effects is needed[30].

The model adopted by Timmermans et al. basically implements coupled equations analogous
to (3.9) in a many-body context, allowing for the conventional treatment of the effective two-body
interaction. This is achieved by introducing into the second quantized hamiltonian a new field operator
ψb(~r) associated with the dimer state |φ0〉 and commuting with the field operator associated with the
single atoms, written as ψa(~r). The coupling of a pair of atoms to the dimmer state, described by the
coupling potential vc in eqs. (3.9), is represented in the hamiltonian density by an interaction term of
the form

Hint(~r) = α
(

ψ†
b(~r)ψa(~r)ψa(~r) + ψ†

a(~r)ψ
†
a(~r)ψb(~r)

)

.

This term represents an effective contact interaction of strength α which either converts a pair of
atoms into a dimer or, conversely, transforms a dimer back into a pair of atoms. The constant α is
related to the reduced width γ of the involved Feshbach resonance as α2 = 2πh̄2γ/M .

Additional terms of the effective hamiltonian density are analogous to eq. (2.5) for each of the
two fields, including the detuning parameter ε and an additional effective two-body interaction term
involving different fields. They read

Ha(~r) + Hb(~r) + Hab(~r) = ψ†
a(~r)

(

− h̄
2∇2

2M
+ Va(~r)

)

ψa(~r) +
λa
2
ψ†
a(~r)ψ

†
a(~r)ψa(~r)ψa(~r) +

+ ψ†
b(~r)

(

− h̄
2∇2

4M
+ ε+ Vb(~r)

)

ψb(~r) +
λb
2
ψ†
b(~r)ψ

†
b(~r)ψb(~r)ψb(~r) +

+ λabψ
†
b(~r)ψ

†
a(~r)ψa(~r)ψb(~r) ,

the effective hamiltonian being therefore

Heff =

∫

d3r [Ha(~r) + Hb(~r) + Hab(~r) + Hint(~r)] . (3.13)
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Note that the mass of the dimers has been written as being twice the mass of the atoms, and different
trap potentials have been allowed for each of these two species. It can be also easily verified that the
operator

N̂ = N̂a + 2N̂b =

∫

d3r ψ†
a(~r)ψa(~r) + 2

∫

d3r ψ†
b(~r)ψb(~r)

is a constant of motion of Heff . Since each dimer accounts for a pair of atoms, this operator represents
the total number of atoms present in the system in either form. Since N̂a and N̂b by themselves are
not constants of motion, we may conclude that stationary states of the hybrid system will in general
involve correlated quantum fluctuations of the two species which however become negligible in the
case of a uniform system (i.e. Va = Vb = 0) when one takes the thermodynamic limit[31]. In order
to obtain a simple mean-field approximation of the Gross-Pitaevski type one must therefore discard
also correlations between fluctuating numbers of atoms and dimers. This is usually done by means of
a coherent ansatz[26, 32]

|uaub〉 = e
∫

d3r
(

ua(~r)ψ†
a(~r)−u∗a(~r)ψa(~r)

)

e
∫

d3r
(

ub(~r)ψ
†
b
(~r)−u∗

b
(~r)ψb(~r)

)

|0〉 (3.14)

which leads to an energy functional of the form

〈uaub|Heff |uaub〉 =

∫

d3r u∗a(~r)

(

− h̄
2∇2

2M
+ Va

)

ua(~r) +

∫

d3r u∗b(~r)

(

− h̄
2∇2

4M
+ ε+ Vb

)

ub(~r) +

+
λa
2

∫

d3r |ua(~r)|4 +
λb
2

∫

d3r |ub(~r)|4 + λab

∫

d3r |ua(~r)|2|ub(~r)|2 +

+α

∫

d3r
(

u∗b(~r)ua(~r)
2 + ub(~r)u

∗
a(~r)

2
)

.

Variation with respect to the amplitudes ua(~r) and ub(~r) with the constraint on the total number
taken care of by means of a Lagrange multiplier µ now yields Gross-Pitaevski coupled equations

(

− h̄
2∇2

2M
+ Va + λa|ua(~r)|2 + λab|ub(~r)|2

)

ua(~r) + 2αub(~r)u
∗
a(~r) = µua(~r)

(

− h̄
2∇2

4M
+ ε+ Vb + λb|ub(~r)|2 + λab|ua(~r)|2

)

ub(~r) + αu2
a(~r) = 2µub(~r) (3.15)

with µ determined by the subsidiary condition on the total mean number of atoms

〈N̂〉 ≡ 〈uaub|N̂ |uaub〉 = 〈N̂a〉 + 2〈N̂b〉 =

∫

d3r
(

|ua(~r)|2 + 2|ub(~r)|2
)

= N.
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The mean squared dispersion in the total mean number of atoms introduced through the coherent
ansatz can also be easily evaluated. It is different from zero, and results from the combined uncorrelated
fluctuations of N̂a and N̂b:

σ2
N = 〈N̂2〉 − 〈N̂〉2 = 〈N̂2

a 〉 + 4〈N̂2
b 〉 − 〈N̂a〉2 − 4〈N̂b〉2 = σ2

Na
+ 4σ2

Nb
.

Alternatively, one may allow the displacement functions ua and ub of the coherent ansatz (3.14)
to be time dependent and obtain the time dependent generalization of the coupled Gross-Pitaevski
equations (3.15) by using the time-dependent variational principle

δ

∫

dt

(

ih̄〈uaub|
∂

∂t
|uaub〉 − 〈uaub|Heff |uaub〉

)

= 0 ,

where variations are to be taken with respect to ua(~r, t) and ua(~r, t). One obtains in this way

ih̄
∂ua(~r, t)

∂t
=

(

− h̄
2∇2

2M
+ Va + λa|ua(~r)|2 + λab|ub(~r)|2

)

ua(~r) + 2αub(~r)u
∗
a(~r)

ih̄
∂ub(~r, t)

∂t
=

(

− h̄
2∇2

4M
+ ε+ Vb + λb|ub(~r)|2 + λab|ua(~r)|2

)

ub(~r) + αu2
a(~r) (3.16)

This time dependent mean field approximation conserves the total mean number of atoms, since
equations (3.16) imply

∂

∂t

∫

d3r
(

|ua(~r, t)|2 + 2|ub(~r, t)|2
)

= 0.

Thus the mean number prescribed by an initial condition will be preserved at all subsequent times.
The stationary equations (3.15) may be easily solved (particularly in the Thomas-Fermi approx-

imation) for a variety of parameter values. Independently of this, however, their form alone reveals
that, although a pure dimer stationary solution is possible (ua ≡ 0, ub 6= 0), there can be no stationary
solution in which ub ≡ 0, i.e., a dimer component must always be present. This follows from the fact
that in this case the second equation requires that one also must have ua ≡ 0. The dimer fraction
in the ground state depends on the detuning, and therefore can be varied by changing the value of
an external magnetic field. If the detuning is large and negative, eqs. (3.15) reasonably predict large
dimer fraction, in possible conflict with the naive point of view, according to which the scattering
amplitude should simply approach its background value.

A particular case of the time-dependent equations (3.16) that can be solved in a relatively simple
way is that of a spatially uniform system (so that one must have Va = Vb = 0) which remains uniform
at all times, so that the functions ua and ub are time-dependent complex constants. The dynamical
equations they satisfy are then
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ih̄
dua
dt

=
(

λa|ua(t)|2 + λab|ub(t)|2
)

ua(y) + 2αub(t)u
∗
a(t)

ih̄
dub
dt

=
(

ε+ λb|ub(t)|2 + λab|ua(t)|2
)

ub(t) + αu2
a(t).

The complex character of the amplitudes is a direct consequence of the coherent ansatz (3.14), which
allows for fixing the phase of each of the two condensates. Writing ua,b = |ua,b|eiϕa,b , inspection of
the equations of motion shows that only the relative phase ϕ ≡ 2ϕa − ϕn is dynamically relevant.
Moreover, since the total atom number density n ≡ |ua|2 +2|ub|2| is a constant of motion, one express
ua| and |ub| in terms of n and a single additional variable f , which can be conveniently defined as

f ≡ 2|ub|2 − |ua|2
n

, −1 ≤ f ≤ 1.

The variable f describes the splitting of the total atom number density into atomic and molecular
densities, the limiting values corresponding respectively to all-atoms and to all-molecules situations.
It turns out to be an action variable canonically conjugated to the angle variable corresponding to
the relevant relative phase ϕ. In fact, the equations of motion for the uniform, hybrid system can be
re-expressed in terms of f and ϕ as[31]

df

dt
=

2α
√
n

h̄
(1 − f)

√

(1 + f) sinϕ ,

dϕ

dt
=

ε

h̄
− nλa

h̄
(1 − f) +

nλb
4h̄

(1 + f) − nλab
h̄

f − α
√
n

h̄

1 + 3f√
1 + f

cosϕ . (3.17)

It is easy to check that these equations are in fact classical hamiltonian equations corresponding to
the hamiltonian function

h ≡ ε

h̄
f +

nλa
2h̄

(1 − f)2 +
nλb
8h̄

(1 + f)2 +
nλab
2h̄

(1 − f2) +
2α

√
n

h̄
(1 − f)

√

1 + f cosϕ .

The curves h =constant in the f × ϕ plane are the phase-space trajectories of the solutions of eqs.
(3.17).

On the experimental side, perhaps the most conspicuous signal of the nearby presence of a Feshbach
resonance in the pioneering experiment of Inouye et al.[3] was an enhanced loss of atoms, leading to
the complete loss of the system. The mechanisms taken to be responsible for such loss actually involve
internal atomic degrees of freedom which are not considered explicitly in the simple two-channel
model. Under static external field conditions, the dimer component relates in fact to a highly excited
vibrational molecular state in the closed channel, which can be easily de-excited in a collision with
another atom[33]. This is in fact an enhanced three-body recombination process due to the formation

58



of the resonant, longer lived dimer. The kinetic energy released in this process leads to the loss of
the atoms involved. In the case of the 85Rb Feshbach resonance the role of this loss mechanism was
much less important, possibly due to the low density of the condensate in this case. In fact, a recent
experimental success relating to this system now strengthens the dimer hybridization picture. As
already observed in ref. [26], a sudden change of this field should cause the two coherent phases to be
out of equilibrium, leading to subsequent oscillations of the dimmer (and of the atom) fraction in time,
as found from the time-dependent generalization (3.16) of the Gross-Pitaevski coupled equations and
also seen in the particular case of eqs. (3.17). This type of oscillation with a frequency which depends
on the detuning ε. and hence on the applied magnetic field B, has in fact been observed near the
B0 = 156 G resonance in 85Rb[34]. The oscillations were however observed in the atomic component,
the molecular component being experimentally very elusive.

Just recently, a different line of experiments succeeded in directly observing the formation of
molecules[35] and also of molecular condensates mediated by a Feshbach resonances in systems of cold
fermionic atoms[36, 37]. Due to the requirements of Fermi statistics, the cooling of fermionic atoms
requires systems containing a mixture of two components (which may be e.g. two different spin states)
in order to allow for the s-wave interactions. The experiments in refs. [35, 36] used 40K atoms, and
that in ref. [37] use 6Li atoms. Bose-Einstein condensation of a molecular phase in this case gives rise
to a very peculiar system involving the equilibrium of this condensate with a two-component Fermi
gas. Some theory of such systems is today in the early stages of development[38].

3.3 Molecules in atomic condensates and hybrid atomic condensates
by stimulated transitions

Stimulated electromagnetic transitions (Raman or otherwise contrived) provide a versatile tool to
manipulate internal atomic degrees of freedom in atomic condensates, besides being many times used

Figure 3.3: Stimulated second-order process
leading from a state containing a pair of atoms
|a〉 ⊗ |a〉 to a molecular state |m〉 in the “a+
a” channel through the intermediate state |I〉
in the dipole-coupled “a + a∗” channel. The
molecular state has binding energy ε, ω1 and
ω2 are the frequencies of the external sources,
which imply detunings ∆1 and ∆2.

ω1
2ω

∆1

∆2

a + a*

m| >
|a> xo|a>

|I>

ε
a + a
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also in their production process. In this final section we describe briefly a process of coherent stimulated
recombination of atoms which produces specific, “cold” molecular states[39] and discuss the coupled
dynamics of a two-species atomic condensate in the presence of stimulated inter-species transitions[40,
41].

3.3.1 Molecule formation

Bound molecular states such as |m〉 (see fig. 3.3) in the elastic channel which is open for the condensate
atoms (labeled as “a+a” in the figure) are not significantly populated by spontaneous electromagnetic
transitions. They will however have important dipole coupling to bound states in closed and rather
high-lying channels involving an appropriate electronic excitation in one of the atoms (such as the
channel labeled “a + a∗” in the same figure), and these will in turn dipole-couple down to bound
molecular states |m〉 in the elastic channel. This second-order coupling can be stimulated by properly
tuned external radiation sources, leading effectively to the decay of the zero relative energy continuum
state to the bound molecular state.

The experiment described in ref. [39] uses thus procedure in a condensate of magnetically trapped
87Rb atoms in the f = 1, mf = −1 hyperfine state, the intermediate state involving an electronic
excitation of one of the atoms from S to the P level. Molecule formation was detected as an increase
in the loss of atoms after exposure to the stimulating fields when ω2 − ω1 was close to the value of
the binding energy ε. The loss has been understood as due to molecule formation and subsequent
escape from the trap. The molecules in this experiment are produced essentially “at rest”, allowing
for unprecedented accuracy in measuring the molecular binding energy. Interesting side many-body
effects are an observed density dependence of the value of ω2 −ω1 for maximum loss (630.020 MHz at
a peak density of 0.77× 1014 cm−3 and 630.023 MHz at 2.6× 1014 cm−3) and of the line shape, which
becomes broader at larger values of the condensate density.

The system of atoms and molecules coupled by the external driving fields can be described by
equations of motion of the form used in connection with the Feshbach resonances, eqs. 3.16, with
an appropriate reinterpretation of parameters. The density of molecules |m〉 is described in terms of
the amplitude ub(~r). The constant α in the term that couples atoms and molecules and the detuning
ε (not to be confused here with the molecular binding energy!) are now set by the intensities and
frequencies of the external driving fields, and therefore in principle completely “tunable”. To bring the
model closer to real experimental situations loss mechanisms can be introduced phenomenologically
into the coupled equations[26, 31].

3.3.2 Hybrid atomic condensates

Second order stimulated processes can also couple two different hyperfine states of the condensate
atoms, as illustrated in figure 3.4 for the case studied in refs. [40]. When a driving pulse is applied
one may end up with a system involving two distinguishable types of atom which may be described
by a hamiltonian density of the form
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Figure 3.4: Stimulated second-order process
coupling the hyperfine state |f = 1,mf = −1〉
to |f = 2,mf = 1〉 in 87Rb. The frequencies
are ω1 ' 6.8 GHz and ω2 ' 2 MHz, in the
microwave and radiofrequency ranges respec-
tively. The state |f = 2,mf − 0〉 acts as an
intermediate state in the second order stimu-
lated process.
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H0 =
2
∑

i=1

ψ†
i (~r)

[

− h̄
2∇2

2M
+ εi + Vi(~r) + ψ†

i (~r)
4πh̄2ai

2M
ψi(~r)

]

ψi(~r) + ψ†
1(~r)ψ

†
2(~r)

4πh̄2a12

M
ψ2(~r)ψ1(~r)

where ψ1(~r) and ψ2(~r) are field operators corresponding to the two different atomic species, the ai are
their associated scattering lengths and a12 is the scattering length describing the scattering of different
species. Note that the two species may interact differently with the trapping arrangement, leading
possibly to species-dependent trap potentials. Since the number of atoms of each species is in this case
a constant of motion, the presence of the internal energy parameters εi is not dynamically relevant.

If, on the other hand, the external driving fields are kept on continuously, one needs also an
interaction hamiltonian describing the coupling of the two species, which can be written as

Hint = α
(

ψ†
1(~r)ψ2(~r) + ψ†

2(~r)ψ1(~r)
)

, H = H0 + Hint . (3.18)

With this extra term in the hamiltonian the number of atoms of each of the two species is no longer a
constant of motion. Since the total number of atoms is conserved, one will in general have correlated
quantum fluctuations of the two constituent populations, similarly to what has been discussed in
connection with the coexistence of atoms and molecules in section 3.2. In this case the internal energy
parameters εi acquire dynamical relevance as they affect the equilibrium mean values of the population
fractions. Together with the coupling strength α, they are determined by the driving field frequencies
and intensities.

A possible mean field approximation of the Gross-Pitaevski type for this system can be obtained
by using a coherent ansatz similar to eq. (3.14), i.e.

|u1u2〉 = e
∫

d3r
(

u1(~r)ψ†
1
(~r)−u∗

1
(~r)ψ1(~r)

)

e
∫

d3r
(

u2(~r)ψ†
2
(~r)−u∗

2
(~r)ψ2(~r)

)

|0〉 .
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Using this ansatz the energy functional has the same form as the hamiltonian H =
∫

d3rH(~r) with
the field operators (and their adjoints) replaced by the c-number functions ui(~r) (and their complex-
conjugates). The average total number of atoms is, on the other hand,

〈u1u2|
∫

d3r
2
∑

i=1

ψ†
i (~r)ψi(~r)|u1u2〉 =

∫

d3r
2
∑

i=1

|ui(~r)|2 .

Fluctuations in the total number appear as a result of ignoring the correlation in the number fluctu-
ations of the two species. Variation of the energy functional using a Lagrange multiplier µ to take
the subsidiary condition regarding the average total number of atoms into account gives the now very
symmetric extremum coupled equations

[

− h̄
2∇2

2M
+ ε1 + V1(~r) +

4πh̄2a1

M
|u1(~r)|2 +

4πh̄2a12

M
|u2(~r)|2

]

u1(~r) + αu2(~r) = µu1(~r)

[

− h̄
2∇2

2M
+ ε2 + V2(~r) +

4πh̄2a2

M
|u2(~r)|2 +

4πh̄2a12

M
|u1(~r)|2

]

u2(~r) + αu1(~r) = µu2(~r) (3.19)

A simple alternate ansatz which explicitly preserves the conservation of the total number of atoms
exists for condensates involving two atomic species, however. It is written in terms of the hybrid

creation operator

a† ≡ 1√
N

∫

d3r
(

u1(~r)ψ
†
1(~r) + u2(~r)ψ

†
2(~r)

)

in which the factor N−1/2 has been introduced for later convenience. Note that, with this definition,
the condition

∫

d3r
(

|u1(~r)|2 + |u2(~r)|2
)

= N (3.20)

gives for the annihilation operator a and its adjoint the standard boson commutation relation [a, a†] =
1. This leads then to the N -atom ansatz

|N ;u1u2〉 ≡
1√
N !

(

a†
)N

|0〉 . (3.21)

Evaluation of the energy functional with this ansatz is straightforward using the commutation relation
[ψi(~r), a

†] = ui(~r)/
√
N . The result is essentially the same as that obtained in the case of the coherent

ansatz, the difference being just additional factors N(N − 1)/N 2 in the two-body terms involving a1

and a2. Variation of the functional with what is now the normalization condition (3.20) accounted for
in terms of a Lagrange multiplier µ leads therefore again to the equations (3.19), albeit with the third
terms on the left hand side multiplied by (N − 1)/N .
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Thus when N is large the functions ui(~r) are determined from the same set of equations. In the
case of the sharp number ansatz (3.21), however, one can evaluate a possibly meaningful fluctuation
in the mean number of one of the two species. To this effect use

〈N ;u1u2|N̂i|N ;u1u2〉 =

∫

d3r |ui(~r)|2 ≡ 〈Ni〉 and 〈N ;u1u2|N̂2
i |N ;u1u2〉 =

N − 1

N
〈Ni〉2 + 〈Ni〉

to obtain

σ2
Ni

= 〈Ni〉
(

1 − 〈Ni〉
N

)

which shows that the number fluctuation is in fact reduced with respect to the uncorrelated poissonian
fluctuations associated with the coherent ansatz. The reduction factor depends on the fraction of the
atoms which on the average are in each of the two coupled internal states, and therefore does not go
away as N becomes very large.

When the ansatz (3.21) is used, the functions ui(~r) describe the spatial distribution of the internal
hybridization of each and all of the N atoms, which as a result of the (“Brueckner”) mean-field
approximation occupy the same single-particle state. This coherent internal superposition takes the
place of the coherence of “two condensates” which one is led to consider when using the coherent
ansatz.

The solution of equations (3.19) is very simple in the case of a uniform system, but even so the
results are not entirely trivial. For definiteness we adopt the point of view of the sharp number ansatz
(3.21). The functions ui(~r) are now complex constants which it is convenient to write in polar form as

ui(~r) →
√

N

V xie
iϕi

where V is a quantization volume. Furthermore, the normalization condition (3.20) can be taken care
of explicitly by parameterizing the xi in terms of a mixing angle θ as

x1 = cos θ , x2 = sin θ.

With these simplifications it is preferable to work directly with the energy functional rather than with
the coupled equations. It becomes

〈H〉
N

=
ε1 + ε2

2
+ C +

A

2
cos2 2θ + ∆ cos 2θ + α sin 2θ cosϕ

where ϕ = ϕ2 − ϕ1 is the relative phase between the two species and the newly defined dimensionless
coefficients C, A and ∆ are
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C =
4πh̄2N

8MV (a1 + a2 + 2a12) ,

A =
4πh̄2N

4MV (a1 + a2 − 2a12) and

∆ =
δ

2
+

4πh̄2N

4MV (a1 − a2) ,

where δ = ε1 − ε2 is the detuning parameter.
Extrema of this function with respect to the relative phase ϕ will exist when sinϕ = 0, which

implies ϕ = 0 or ϕ = π. The extrema with respect to the mixing angle θ are easily determined for
given values of the parameters from the stationarity condition

1

N

∂〈H〉
∂θ

= 0 =⇒ A

2α
sin 4θ +

∆

α
sin 2θ + cos 2θ cosϕ = 0.

Note that only two independent combinations of the various parameters appear in this equation. Some
solutions are shown in figure 3.5. For sufficiently negative values of A/α one has two distinct minima
when ∆/α is in a certain vicinity of zero.
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Figure 3.5: Internal mixing angle θ in the case of a uniform hybrid condensate as a function of ∆/α
for A/α = −3 (left) and A/α = 0 (right). The upper curves on both graphs correspond to ϕ = π,
while ϕ = 0 in the lower curves. Full and dashed lines correspond respectively to minima and maxima
of the energy functional.
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An analysis of these solutions from the point of view of the coherent ansatz leads of course to
similar results. It can be found in ref. [32].
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Chapter 4

One step beyond the Gross-Pitaevski
description

Gross-Pitaevski (G.-P.) theory, including the effective two-body interaction based on the scattering
length, draws its most fundamental (if not most important) support from the results of Lieb and
Seiringer[22] concerning the G.-P. limit. This limit carries a strong statement bearing on the ground
state of the many boson system (with purely repulsive two-body interactions!), which essentially
declares its “many-body triviality” (absence of many-body correlations, see section 2.4). Therefore it
is very uninformative on any features that involve such correlations in an essential way, ranging from
ground state properties under conditions falling short of the G.-P. limit to the nature and spectrum
of low lying excitations.

One decisive first step towards dealing with these matters was taken long ago by Bogoliubov[42], on
the basis of an heuristic approach which appears adequate for dilute systems, although such systems
were not experimentally available at the time. Its concepts were soon re-elaborated from alternate
points of view with a rather strong but unfulfilled aim of obtaining results valid for at least not-so-dilute
systems (see e.g. refs. [12]).

Some of the main approaches to such matters, within the particular and now experimentally rich
domain of dilute systems, will be treated in the sections to follow.

4.1 Bogoliubov’s quasi-particles

The problem treated by Bogoliubov consisted in determining the nature of the low lying excitations
of a Bose-Einstein condensate, and in particular its dispersion equation in an extended, homogeneous
system, which means the dependence of the excitation energies on their momentum. Of course the
atom-atom interaction plays an essential role here.

Although one can obtain the results due to Bogoliubov in a variety of different ways1, it will be

1In particular, they may be obtained by linearization of the time-dependent Gross-Pitaevski equation (the one-
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useful to present it here in the light of being some sort of perturbative correction to the pure G.-P.
effective mean field picture, as this will also make way for the developments to follow.

Consider then the effective hamiltonian (2.5) for the simplest case of a uniform system, i.e., with
V (~r) ≡ 0. It is convenient here to use a momentum representation defined in terms of normalized
plane waves satisfying periodic boundary conditions in a quantization volume V. The momentum
representation of the field operators is then given as

a†~k
=

1√
V

∫

d3r ei
~k·~rψ†(~r) .

They satisfy usual boson commutation relations. In this representation the kinetic energy is diagonal
and the hamiltonian is written as

Heff =
∑

~k

h̄2k2

2M
a†~k
a~k +

λ

2V
∑

~k1,~k2,~q

a†~k1+~q
a†~k2−~q

a~k1a~k2 . (4.1)

The sum over three momenta in the two-body term takes momentum conservation explicitly into
account and the explicit assumption is made that λ > 0.

The minimizer of the G.-P. functional for this hamiltonian is just the constant zero-momentum
plane wave 1/

√
V. When the density of the system is such that there areN particles in the quantization

volume V, the effective mean field ground state is

|Φ〉 =
1√
N !

(

a†0

)N
|0〉.

It is obvious, however, that such a state is not an eigenstate of Heff on account of the two-body term,
which in particular contains a contribution a†~q a

†
−~q a0 a0 which, when acting on |Φ〉, will convert a

pair of zero momentum bosons into two bosons with momenta ±~q. The corresponding amplitude will
moreover contain a bosonic enhancement factor of

√

N(N − 1). These terms represent propensities of
the hamiltonian which are completely frustrated within the bounds of the G.-P. approximation, which
only takes into account terms in which all the field operators are zero momentum operators.

Now observe that, due to momentum conservation, the number of zero momentum operators in
any term of the effective hamiltonian can be zero, one, two or four. In view of the expected large
population of the zero momentum state and its consequences in terms of bosonic enhancement factors,
a less drastic truncation would result if the only terms left out would be those with at most one zero
momentum operator, and hence with three or four nonzero momentum operators, corresponding to
single-boson states expected to be weakly populated. This would leave us with the not-so-truncated
hamiltonian

component counterpart of eqs. (3.16)) in the small amplitude oscillatory regime around the stationary equilibrium
solution, see e.g. Chapter 13 of ref. [10].
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H ′
eff =

λ

2V a
†
0a

†
0a0a0 +

∑

~k 6=0

[

h̄2k2

2M
a†~k
a~k +

λ

2V
(

a†~k
a†
−~k
a0a0 + a†0a

†
0a−~ka~k + 4a†~k

a†0a0a~k

)

]

=

≡ H ′
0 +H ′

q .

The term H ′
0 acts only in the zero momentum sector, while the term H ′

q is characterized by a quadratic
dependence on non-zero momentum field operators.

This hamiltonian clearly conserves the total number of bosons (i.e., commutes with N̂ ≡∑

~k
a†~k
a~k),

but of course not the number of bosons in the zero momentum state, or the number of bosons in non-
zero momentum states when considered separately (i.e., does not commute with N̂0 ≡ a†0a0 or with
N̂ − N̂0). Therefore its ground state will be complicated by entangled quantum fluctuations of these
partial numbers. The standard way to circumvent these complications is again to decorrelate by
factorization the zero momentum and the nonzero momentum parts of the state vector at the expense
of the conservation of the total number of bosons. Furthermore, in order to keep the density of the
system under control, one constrains the average number of atoms in the quantization volume by
means of the Lagrange multiplier µ, and considers thus

H ′
eff − µN̂ = H ′

0 − µN̂0 +
∑

~k 6=0

[(

h̄2k2

2M
− µ

)

a†~k
a~k +

λ

2V
(

a†~k
a†
−~k
a0a0 + a†0a

†
0a−~ka~k + 4a†~k

a†0a0a~k

)

]

One way to implement this factorization without imposing further ansatz restrictions on the non-
zero momentum part, assume that the zero momentum part of the state vector is frozen in a coherent
state

|z〉 = eza
†
0
−z∗a0 |0〉

which will in particular produce the appropriate bosonic enhancement factors once the average number
of atoms is properly adjusted. In the spirit of a perturbative treatment of the quadratic terms, the
values of z and and µ are determined by minimization of the zero momentum energy functional with
the proper number constraint:

δ
(

〈z|H ′
0 − µN̂0|z〉

)

= δ

(

λ

2V |z|4 − µ|z|2
)

= 0 , 〈z|N̂0|z〉 = |z|2 = N.

Variation of the functional leads to the equation

(

λ

V |z|2 − µ

)

z = 0 hence |z|2 =
V
λ
µ = N (4.2)

discarding the trivial solution z = 0. Thus z =
√
Neiγ and µ = λN/V.
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The effective hamiltonian heff extended to the non-zero momentum sector is next obtained as the
partial expectation value of H ′

eff − µN̂ in the state |
√
Neiγ〉. The phase γ is in fact of no consequence

since it can be absorbed by redefining the phases of the ~k 6= 0 states, and will accordingly be omitted
in the following. One obtains

heff =
λN2

2V +
∑

~k

(

h̄2k2

2M
− µ

)

a†~k
a~k +

λN

2V
∑

~k 6=0

(

a†~k
a†
−~k

+ a
−~k
a~k + 4a†~k

a~k

)

=

=
λN2

2V +
∑

~k

h̄2k2

2M
a†~k
a~k +

λN

2V
∑

~k 6=0

(

a†~k
a†
−~k

+ a
−~k
a~k + 2a†~k

a~k

)

. (4.3)

In the final expression the Lagrange multiplier µ was substituted by its value obtained in (4.2).
The now standard way to deal with such an hamiltonian involves “canonical transformations” of

the field operators of the form

η~k = uka~k + vka
†

−~k
, u2

k − v2
k = 1.

This type of transformation preserves the commutation relations and can be inverted, with the result

a~k = ukη~k − vkη
†

−~k
.

Substitution in (4.3) yields a quadratic form in the operators η~k, η
†
~k
. The transformation coefficients uk,

vk can then be determined so as to eliminate what Bogoliubov called the “dangerous terms”, involving
two creation or two anihilation operators. As a result of this the hamiltonian (4.3) is reduced to the
form

heff =
λN2

2V + δh
(0)
eff +

∑

~k

h̄ωkη
†
~k
η~k

where δh
(0)
eff is a c-number term resulting from normal ordering the “non-dangerous” terms. Thus the

net result of this procedure is i) to generate a set of normal mode-like excitations with energy h̄ωk and

momentum ~k created by the operators η†~k
; these are the Bogoliubov “quasi-particles”, and ii) to give

a correction δh
(0)
eff to the G.-P. ground state energy. Note that this ground state must now be taken

as the “quasi-particle vacuum”, defined as the state which is annihilated by any of the operators η~k.

4.1.1 Easy route to the quasi-particles

The procedure described above to obtain explicit expressions for the transformation coefficients uk, vk
and hence also for the important quantities ωk and δh

(0)
eff can, of course, be followed “verbatim”. It is
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not, however, the shortest, or the more elegant route. A better approach on both of these aspects[32]
involves, as a first step, rewriting the hamiltonian (4.3) in terms of the coordinate-like operators x~k
and momentum-like operators p~k defined as

x~k ≡
a
−~k

+ a†~k√
2

, p~k ≡
a~k − a†

−~k

i
√

2
, [x~k, p~k ′ ] = iδ~k,~k ′ .

These definitions are easily inverted, giving the momentum space field operators in terms of x~k and
p~k. Substitution in (4.3) then gives

heff =
λN2

2V +
∑

~k 6=0

[(

h̄2k2

4M
+
λN

V

)

x~kx−~k +
h̄2k2

4M
p~kp−~k

]

−
∑

~k 6=0

(

h̄2k2

4M
+
λN

2V

)

.

The last term is a divergent c-number sum over momenta which will contribute to δh
(0)
eff and will be

dealt with below.
The appropriate canonical transformations to obtain the quasi-particle excitations are now simple

scale transformations
{

x~k
p~k

−→
{

Γkx̄~k
p̄~k/Γk

Writing heff in terms of x̄~k and p̄~k, and choosing the scale factors Γk so that the coefficients of the x̄-
and p̄-dependent terms are equal, i.e.

(

h̄2k2

4M
+
λN

V

)

Γ2
k =

h̄2k2

4M

1

Γ2
k

implying Γk =

[

h̄2k2

4M
h̄2k2

4M + λN
V

]

1

4

,

one is left with

heff =
λN2

2V −
∑

~k 6=0

(

h̄2k2

4M
+
λN

2V

)

+
∑

~k

√

√

√

√

h̄2k2

4M

(

h̄2k2

4M
+
λN

V

)

(

x̄~kx̄−~k + p̄~kp̄−~k

)

=

=
λN2

2V −
∑

~k 6=0

(

h̄2k2

4M
+
λN

2V

)

+
∑

~k

√

√

√

√

h̄2k2

2M

(

h̄2k2

2M
+

2λN

V

)

(

η†~k
η~k +

1

2

)

where the quasi-particle operators are related to the scaled coordinate-like and momentum-like oper-
ators in the same way as the a~k, a

†
~k

are related to the x~k, p~k:

x̄~k ≡
η
−~k

+ η†~k√
2

, p̄~k ≡
η~k − η†

−~k

i
√

2
, [x̄~k, p̄~k ′ ] = iδ~k,~k ′ .
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The transformation coefficients uk and vk relating the quasi-particle operators to the a~k, a
†
~k

are also
easily obtained. In fact

η~k =
x̄
−~k

+ ip̄~k√
2

=
x
−~k
/Γk + iΓkp~k√

2
=

(1 + Γ2
k)a~k + (1 − Γ2

k)a
†

−~k

2Γk

from which it follows that

uk =
1 + Γ2

k

2Γk
and vk =

1 − Γ2
k

2Γk
.

We turn now to the effects of non-zero momentum states on the condensate dynamic properties.
First, the quasi-particle energies are seen to be given by

h̄ωk =

√

√

√

√

h̄2k2

2M

(

h̄2k2

2M
+

2λN

V

)

k→0−→
√

λρp
M

h̄k .

A remarkable outcome of this calculation is the phonon-like linear dependence with h̄k at low momenta.
The slope is usually referred to as the sound velocity c, which can be expressed as

c =

√

λρp
M

=
h̄

M

√

4πρPa =
h̄

MξH

where ξH is the healing length (2.14). The sound velocity is therefore a quantity which remains
unchanged under the Gross-Pitaevski limit. The linear dispersion equation at small momenta has
in fact been associated by Landau[43] with superfluidity of the condensate, as it prevents a particle
moving in the condensate to lose energy by creating condensate excitations for phase-space reasons.

Second, collecting the various contributions to the correction to the ground state energy δh
(0)
eff ,

which includes now another divergent sum of zero-point-like energy terms coming from the quasi-
particle hamiltonian, one is left with

δh
(0)
eff =

1

2

∑

~k 6=0





√

√

√

√

h̄2k2

2M

(

h̄2k2

2M
+

2λN

V

)

− h̄2k2

2M
− λN

V





still a divergent result! The divergence occurs for large momenta, as can be rewriting the summand
(with obvious abbreviated notation) as

√

ek(ek + 2λρP ) − ek − λρP = ek

(
√

1 +
2λρP
ek

− 1 − λρP
ek

)

ekÀλρP−→ −λ
2ρ2
P

2ek
+
λ3ρ3

P

2e2k
+ · · · ,

where the last result has been obtained by expanding the term with the square root. When the sum
over ~k is transformed to an integral, the factor k2 of the momentum space volume element will cancel
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the asymptotic k−2 dependence of the first term, causing the integral to have a linear divergence
proportional to λ2. This divergence has been very specifically addressed in ref. [44], where it is shown
that it results from the particular form of the two-body effective potential as implemented in the
starting effective hamiltonian2. This effective potential, written as

v(~r1, ~r2) = λ δ(~r1 − ~r2),

must be seen as a truncated version of the more accurate effective potential, introduced as the pseu-

dopotential in ref. [45],

v(~r1, ~r2) = λ
∂

∂|~r1 − ~r2|
[ |~r1 − ~r2|δ(~r1 − ~r2) ] .

These two forms of the potential give equivalent results except in order λ2, where the effect of the more
accurate version is simply to cancel out the second order term causing the divergence. In particular,
the two forms of the effective potential are completely equivalent within the Gross-Pitaevski mean
field approximation.

Introducing this amendment to the correction to the ground state energy, one is left with the now
regular expression

δh
(0)
eff =

1

2

∑

~k 6=0





√

√

√

√

h̄2k2

2M

(

h̄2k2

2M
+ 2λρP

)

− h̄2k2

2M
− λρP +

λ2ρ2
P

2ek



 .

It can be calculated replacing the sum by an integral over momentum space[44] with the result

δh
(0)
eff =

NλρP
2

128

15
√
π

√

ρPa3.

This result has been first derived by Lee and Yang in 1957[46] using a different method. It amounts
only to a small correction in the dilute limit ρpa

3 ¿ 1 and in fact vanishes in the Gross-Pitaevski
limit.

It is perhaps useful to summarize the main points of the preceding discussion, in which some effort
was spent in trying to enhance the possibility of examination rather than belief. First, one takes into
account off-diagonal momentum space matrix elements of the two-body effective interaction in which
two of the four states involved are different from the macroscopically populated zero momentum state.
This is considered as a perturbation of the condensed mean field ground state and determines a set
of “normal excitation modes” which constitute the Bogoliubov quasi-particles. When the quantum

2Cf. in this respect the treatment of the same problem in ref. [43]. Here the perturbative treatment of a two-body
interaction potential is explicit, and the regularizing correction is obtained as the second order perturbative correction to
the zero-momentum only ground state. Note that this point of view in untenable when the effective two-body interaction
is related to the two-body scattering amplitude, since in this case the second order term is spurious.
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fluctuations due to these excitation modes are taken into account by redefining the ground state as

the “quasi-particle vacuum”, an energy correction arises which is proportional to
(

ρPa
3
)1/2

. In order
to obtain this correction one must take special care in checking the consistency of the second order
contributions of the two-body effective potential. The pseudopotential recipe of Huang and Yang[45]
avoids the second order divergences in a way which is consistent with the kinship of the effective
interaction with the two-body scattering amplitude.

4.1.2 Ground state depletion

The ground state state vector in the Bogoliubov approximation |ΦB〉 is the vacuum of the Bogoliubov
quasi-particles and a coherent state of zero momentum single particle states, i.e.

η~k|ΦB〉 = 0 , all ~k ; a0|ΦB〉 =
√
N |ΦB〉 .

The first of these properties implies that there are particles present in non-zero momentum states,
since the quasi-particle operators η~k are linear combinations of creation and annihilation operators.
One of the byproducts of the above calculation is therefore a perturbative estimate of particle number
distribution in non-zero momentum states due to the action of the effective two-body interaction.
This distribution is usually called the depletion of the condensate, from the fact that particles found in
these states must have been removed from the zero momentum condensate. Strictly speaking, violation
of the conservation of particle number in this calculation does not conform this meaning, however.
Actually the depletion is here an additional distribution of particles which can be simply calculated
from the expression which gives the number of particles with momentum ~k 6= 0 in the quasi-particle
vacuum, namely

n~k ≡ 〈ΦB|a†~ka~k|ΦB〉 = v2
k =

(

1 − Γ2
k

)2

4Γ2
k

=
h̄2k2

2M + λρP
√

h̄2k2

2M

(

h̄2k2

2M + 2λρP
)

− 1 ,

where use has been made of the previously obtained expression for Γk. Note that this expression refers
to a given vector momentum, even though it depends only on it magnitude k. It diverges as k−1 for
small k. Due to this isotropy one can define a depletion density per interval of k as

dn

dk
≡ V

(2π3)
4π k2 n~k

in which the divergence for small k has been controlled by the momentum space volume element. It
is also easy to check that this depletion density approaches zero fast enough for large k so that its
integral, which corresponds to the “total depletion” in the Bogoliubov ground state is finite and also
given in terms of the diluteness factor of the condensate as

ntot =
8N

3
√
π

(

ρPa
3
)1/2

.

Note that this expression also vanishes in the Gross-Pitaevski limit, in which ρPa
3 → 0.
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4.2 Self-consistency looks worse

A crucial element in the Bogoliubov approach is the canonical transformation leading from the par-
ticle field operators to the quasi-particle operators, which is there used to obtain normal-mode-like
excitations with non-zero momentum added perturbativelu on top of a zero-momentum condensate.
An improvement over the perturbative character of this approach consists in starting from a slightly
more general canonical transformation which will allow both for a coherent condensate and for quasi-
particles and to determine both ingredients self-consistently. This is, in words, what is known as the
Hartree-Fock-Bogoliubov (HFB) approximation, which we proceed to develop in continuation[47, 48].

The dynamics is based again on the hamiltonian (4.1), the system being assumed to be uniform
and treated in a momentum representation defined in terms of periodical boundary conditions in
quantization volume V. The ground state will be approximated by a “self-consistent vacuum” of
quasi-particle (normal mode-like) excitations associated to creation and annihilation operators η†~k

, η~k
related to the corresponding momentum space components a†~k

, a~k of the field operator through the
canonical transformation

a~k ≡ c~k + z0δ~k,0 ≡
(

ukη~k − vkη
†

−~k

)

+ z0δ~k,0 , (4.4)

where z0 is a c-number and u2
k−v2

k = 1. For ~k 6= 0 this is of course just the Bogoliubov transformation

leading to the quasi-particle operators, but for ~k = 0 the possibility of a c-number displacement of
the particle operator is included through the parameter z0. The interpretation of this parameter
follows from the fact that the state vector |0̃〉 which is annihilated by the displaced operator c0 has
the property

c0|0̃〉 = 0 =⇒ (a0 − z0) |0̃〉 = 0 =⇒ a0|0̃〉 = z0|0̃〉 ,

i.e., it is the eigenstate of the annihilation operator a0 with eigenvalue z0 and hence ( up to an overall
phase) the coherent state

|0̃〉 ≡ |z0〉 ≡ ez0a
†
0
−z∗

0
a0 |0〉.

Note that one could have performed the Bogoliubov transformation before introducing the zero mo-
mentum c-number displacement, with equivalent results. In fact, in this case one would first have
written

a~k = uvη̃~k − vkη̃
†

−~k

and then introduce the zero momentum displacement by defining

η̃~k = η~k + ζ0δ~k,0.
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Combining these two steps one is left with

a~k = ukη~k − vkη
†

−~k
+ (u0ζ0 − v0ζ

∗
0 )δ~k,0

which is equivalent to (4.4) and establishes the relation of z0 to ζ0.
The canonical transformation (4.4) therefore makes all the ingredients used in the Bogoliubov

treatment again fully available. However, this transformation will now be used in a way that attempts
to determine its parameters in a simultaneous, “self-consistent” way instead of in the sequential way
used in that treatment.

The first step is straightforward, if algebraically rather cumbersome. In consists in substituting the
transformed operators (4.4) into the effective hamiltonian, normal-ordering the quasiparticle operators
and sorting the resulting terms according to the number of normal ordered quasiparticle operators they
contain. In order to enforce the appropriate density (average number of particles N in the quantization
volume V) a Lagrange multiplier µ is introduced. Again one finds that the phase of the zero momentum
displacement z0 can be absorbed by redefining the phases of the k 6= 0 single-particle states, so that
this quantity will simply be taken as real in what follows. One obtains in this way terms having zero
to four quasiparticle operators, collected respectively as hi, with i ranging from zero to four. Thus

Heff − µ
∑

~k

a†~k
a~k −→

4
∑

i=0

hi . (4.5)

Now if |Φ〉 is the (normalized) quasi-particle vacuum, i.e. η~k|Φ〉 = 0 for all ~k, then the expectation

value of Heff − µN̂ in this state reduces to the c-number part h0, which is given by

h0 = −z2
0µ+

λ

2V z
4
0 +

∑

~k

(

ek − µ+ 2λz2
0

)

v2
~k
− λ

V z
2
0

∑

~k

u~kv~k +
λ

V











∑

~k

v2
~k





2

+
1

2





∑

~k

u~kv~k





2





.

where ek ≡ h̄2k2/2M . Note that there is no guarantee that the sums over momenta which appear
in this expression are finite. Ignoring this question for the moment, and proceeding to the formal
minimization of this quantity with respect to the parameters of the canonical transformations, leads
to the equations

∂h0

∂z0
= 0 ⇒ z0



−µ+
λ

V



z2
0 +

∑

~k

(

2v2
k − ukvk

)







 = 0

∂h0

∂vk
+
∂h0

∂uk

∂uk
∂vk

= 0 ⇒ tanh 2σk =
λ
V

(

z2
0 −∑k′ uk′vk′

)

ek + 2 λV

(

z2
0 +

∑

~k′
v2
k′

)

− µ
, (4.6)

where the u~k and v~k have been parametrized in terms of the hyperbolic angle σk as
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uk = coshσk , and vk = sinhσk ,

so as to take into account the condition u2
k − v2

k = 1. The subsidiary condition on the number of
particles, on the other hand, gives the additional equation

〈Φ|N̂ |Φ〉 = N ⇒ z2
0 +

∑

~k

v2
k = N .

It turns out that these same equations imply that the “dangerous terms” of h1 and h2 vanish
(i.e., terms containing only quasi-particle creation operators, which therefore do not annihilate the
quasiparticle vacuum). The only remaining such term occur in h4, contains four quasi-particle creation
operators. Thus, the quasi-particle vacuum fails to be an eigenstate of Heff − µN̂ on the account of
this term only.

The interesting remaining part is of course the “non-dangerous” part of h2, which reads

h2 =
∑

~k

h̄ωk η
†
~k
η~k , h̄ωk =

√

√

√

√

√



ek +
λ

V



z2
0 +

∑

~k′

uk′vk′









2

− λ2

V2



z2
0 −

∑

~k′

uk′vk′





2

.

Note that

h̄ωk
k→0−→

√

√

√

√4
λ2

V2
z2
0

∑

~k′

uk′vk′ ≡ ∆HFB

so that the dispersion equation for the quasiparticles of the HFB approximation does not have the
interesting phonon behavior of the simple Bogoliubov approximation at small momenta. The quantity
∆HFB is usually referred to as the “HFB energy gap”. One of the factors contributing to this energy
gap is the sum which can be recognized as giving the contribution of the non condensate particles to
the so called pairing (or anomalous) density associated with the quasiparticle vacuum

ρ
(pair)
~k

≡ 〈Φ|a~ka−~k|Φ〉 = z2
0δ~k,0 − ukvk .

The “normal” density can also be split into condensate and non-condensate contributions as

ρ
(norm)
~k

≡ 〈Φ|a†~ka~k|Φ〉 = z2
0δ~k,0 + v2

k .

A “gapless” approximation can therefore be obtained from the HFB approximation by simply ignoring
the contribution of the non-condensate particles to the pairing density. This approximation is known
as the Popov approximation[47, 49].
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4.2.1 Difficulties with the contact effective interaction

It has been mentioned that the results obtained for the HFB approximation were formal in the sense
that the convergence of the sums over momenta was not being checked explicitly. It so happens that,
for the case of the contact effective two body interaction included in the hamiltonian (4.1), the sum over
the anomalous density contributions that are ignored in the Popov approximation are not convergent.
This may be seen as follows. First, assume that the sum for the anomalous density converges. If so,
then the second of eqs. (4.6) shows that for sufficiently large k the hyperbolic angle σk, and hence
also its hyperbolic sine which corresponds to vk decrease as k−2. The sum is however to be taken
over all directions of the momenta as well, and this contributes a factor k2 from the volume element
in momentum space. Since uk approaches one from above, for large k, it follows that the sum in fact
cannot converge.

One easy way to avoid this divergence[48] is to replace the contact effective interaction by a finite
range one, such as

V (~r1 − ~r2) −→
4πh̄2a

M

(

1√
πb

)3

e−
|~r1−~r2|

2

b2 (4.7)

which reproduces the usual form of the contact interaction in the limit b → 0. The two-body matrix
elements of this interaction in momentum space involve

V (q) =
1

V

∫

d3r ei~q·~rV (~r) =
4πh̄2a

MV e−
b2q2

4
b→0−→ 4πh̄2a

MV =
λ

V
The two-body term of the effective hamiltonian (4.1) becomes

∑

~k1,~k2,~q

V (q)a†~k1−~q
a†~k2+~q

a~k2a~k1

and the paring density contributions e.g. to the second eq. (4.6) appear in the form

tanh 2σk =

(

z2
0 −∑k′ V (|~k − ~k1|)uk1vk1

)

ek +
(

(V (0) + V (k)) z2
0 +

∑

~k1

(

V (0) + V (|~k − ~k1|)
)

v2
k1

)

− µ
,

the divergence being now controlled by the momentum transfer dependence of the two-body matrix
elements. With this choice of effective two body interaction the HFB approximation is finite but still
features a gap in the quasiparticle dispersion equation.

This approach certainly produces a calculable self-consistent mean field theory on which one can,
in particular, mount further improvements, by considering small amplitude fluctuations around the
mean field. This has been pursued in ref. [48] and will be briefly reviewed in the next section. What
remains in relatively less secure grounds is its relation to the actual physical situation, since the finite
range of the potential, which is the ingredient which is essential to make the theory finite, is in fact
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not tied to it in any reasonably secure manner. Recall, furthermore, that the adopted zero momentum
fit to the usual function of the scattering length makes the finite range potential conceptually akin to
the scattering amplitude associated with the realistic atom-atom interaction.

One question which can be put at this point is whether the full recipe of Huang and Yang[46]
for the pseudopotential is useful in this connection. One way of approaching this question is to try
and evaluate the ground state energy in the HFB approximation, which means to evaluate the c-
number term h0 of the hamiltonian expressed in terms of the shift parameter z0 and of normal ordered
products of quasiparticle operators. Self-consistency makes this task much more demanding than the
corresponding one in the simple Bogoliubov approximation, however, since the values of the various
parameters appearing in h0 are actually determined by the extremum conditions (4.6) derived from
h0 itself. There seems to be no calculation done along these lines in terms of the full pseudopotential,
and there possibly will never be one.

4.3 Elementary excitations on worse looking richer foundations

Static solutions to self-consistent mean field approximations such as Hartree-Fock and Hartree-Fock-
Bogoliubov are interesting starting points for studying stability and normal modes of excitation. One
of the interesting and often explored features of such theories is that continuous symmetries of the
hamiltonian which are broken in the mean field solution reappear as solutions of zero frequency,
associated with the generators of the broken symmetry transformations, in the so called Random
Phase Approximation (RPA) treatment of the excitation modes. The symmetry breaking itself can be
seen as the resource explored by the mean field treatment to take important correlations into account
within the limitations imposed by the mean field constraint.

Possibly the example of this syndrome that is most simply visualized is the generation of the
self-bound character of atomic nuclei within the Hartree-Fock approximation. The finiteness of the
bound nuclear system is clearly a correlation property, each nucleon being correlated so as not to be
too far away from other nucleons, their center of mass behaving as a free particle with the appropriate
total mass. This correlation property is replaced in the self-consistent mean field treatment by an
attractive average potential generated by all nucleons and also binding them. In this way the mean
field treatment replaces “not being too far from the rest” simply by “being confined by the common
average potential”, keeping all the nucleons together without they having to keep track of each other.
This is achieved, however, at the expense of breaking the translational symmetry of the hamiltonian
through the introduction of the average localizing potential. One of the solutions to the RPA equations
to identify excitation modes of such a system will be the total momentum operator, the generator of
spatial translations of the system, with excitation frequency equal to zero, implying the absence of a
restoring force as a consequence of the symmetry (see e.g. ref. [50], section 8.4.7).

In the context of the Bose-Einstein condensates these features remain true and can be taken
advantage of when one uses as a starting point to study excitation modes the self-consistent HBF
approximation. Although the relation of calculated results to the actual physical situation involves
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the question of the effective interaction which is used, general properties which are not oversensitive
to it, such as the fate and role played by the energy gap in the BHF spectrum as well as the fate and
role of the broken symmetries, can be safely investigated using self-consistently a finite range potential
such as the one introduced in the preceding section.

A possible starting point for this brief review of the main results of ref. [48] is the observation that
the generator of the symmetry which is broken by the HFB treatment is the number operator N̂ =
∑

~k
a†~k
a~k, which can be written in terms of the quasiparticle operators and the c-number displacement

z0 as

N̂ = z2
0 +

∑

~k

v2
k + z0(u0 − v0)(η0 + η†0) −

∑

~k≥0

2ukvk
1 + δ~k,0

(

η†~k
η†
−~k

+ η~kη−~k

)

+
∑

~k

(

u2
k + v2

k

)

η†~k
η~k ,

where the restriction on the second sum means that each pair of opposite vectors ~k, −~k in to be
included only once. The first two terms are the only ones to survive when the expectation value
is taken in the quasiparticle vacuum |Φ〉, and must therefore give the number of particles N . The
operator part should emerge as a zero frequency normal mode in the desired RPA treatment, and thus
its form serves to indicate the minimal structure needed for the excitation operators to be determined.
The quasi-particle representation of N̂ shows that besides quasiparticle creation and annihilation
operators, two-quasiparticle operator terms also appear. It turns out that contributions of the form
η†~k
η~k′ are not relevant for the equations of motion to be derived for the excitation operators, while it

is important to include the quasiparticle creation and anihilation terms. Thus the general ansatz for
the elementary excitation operator with momentum ~P is taken to be

Q†
~P

= x ~P η
†
~P

+ y~P η−~P +
∑

~q≥0

X~q, ~P

η†
~q+~P/2

η†
−~q+ ~P/2√

1 + δ~q, 0
+ Y~q, ~P

η~q−~P/2η−~q− ~P/2√
1 + δ~q, 0

,

where the x ~P , y~P and X~q, ~P , Y~q, ~P are coefficients to be determined. These two groups of coefficients,

which refer to one and two quasi-particle components of the sought normal modes (three, or more,
quasiparticle contributions to the excitation operator are ignored), are coupled to each other through
the three quasiparticle part h3 of the decomposition (4.5) of the effective hamiltonian. In addition the
four quasiparticle term h4 couples the two quasi-particle components among themselves. Note that all
terms create a momentum ~P , either through the addition or removal of one quasiparticle or through
the addition or removal of a pair of quasiparticles with relative momentum ~q.

The total momentum ~P of an excitation mode is a sharply defined quantity, so that the RPA
equations determining the coefficients x ~P , y~P and X~q, ~P , Y~q, ~P have to be solved for each value of ~P

(or of just the magnitude P , due to rotational invariance). Implementing the equations in terms or
periodical boundary conditions in a quantization volume V, reduces them to large matrix equations
which are however amenable to numerical solution. They yield, for each P , a set of modes Qσ †

~P
whose

associated coefficients are chosen to satisfy the normalization condition
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Figure 4.1: Left: Numerical dispersion equation for RPA elementary excitations on the HFB quasi-
particle vacuum. The calculation has been done assuming a not so dilute system with ρa3 = .01. The
momentum scale is plotted in units of h̄/a, and the energy scale is in units of h̄2/2Ma2. The full line
represents a discrete phonon-like branch, and the dashed line represents the threshold of a continuum.
At zero momentum P the threshold is at twice the HFB gap. Note that the discrete branch essen-
tially merges with the continuum at P ∼ h̄/a. Right: One and two quasi-particle fractions in the
composition of the discrete branch. The shift from one quasi-particle to two-quasiparticle dominance
at P ∼ 0.75 h̄/a suggests an “avoided crossing” situation, with most of the one quasi-particle strength
located within the continuum branch for higher momenta.

〈Φ|
[

Qτ~P , Q
σ †
~P

]

|Φ〉 = xτ∗~P x
σ
~P
− yτ∗~P y

σ
~P

+
∑

~q≥0

(

Xτ∗
~q, ~P
Xσ
~q, ~P

− Y τ∗
~q, ~P
Y σ
~q, ~P

)

= δτσ .

Solutions obtained for a gaussian effective two-body interaction of the form (4.7) with b = 3, 96 a
and assuming that the diluteness parameter ρa3 is .01, are summarized in fig. 4.1. What one obtains for
each value of P is a discrete, lower energy solution in addition to a “continuum” (within the limitations
of the scheme based on the adoption of periodical boundary conditions) of solutions starting at a P -
dependent threshold energy which goes to the limit of twice the HFB gap for P → 0. The set of
discrete solutions form a low energy discrete branch of excitations with phonon behavior, and merge
at P = 0 with the the symmetry generator N̂ .

Reference to the dependence of the coefficients x ~P , y~P and X~q, ~P , Y~q, ~P on the total momentum

~P gives additional information on the composition of the normal modes. As shown on the right
hand graph of fig. 4.1, for low momenta the discrete branch is dominated by the one quasi-particle
contributions

c1(~P ) = |x ~P |
2 − |y~P |

2
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while the contributions of two quasi-particle terms

c2(~P ) =
∑

~q≥0

(

|X~q, ~P |
2 − |Y~q, ~P |

2
)

= 1 − c1(~P )

remain small. This dominance of one quasi-particle terms decreases as P increases and is replaced by
a two quasi-particle dominance near the P values where the energy of the discrete branch approaches
the continuum threshold and eventually merges with it.

This behavior suggests an “avoided crossing” situation, as the one free HFB quasi-particle energy
and the threshold for two free quasi-particles cross. At values of P beyond the onset of the two quasi-
particle dominance in the discrete branch, the bulk of the one quasi-particle strength is to be found
spread in the continuum branch.
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Chapter 5

Many mode traps, localization and
interference

As discussed in Chapter 2, the state of a dilute system of very cold trapped bosons (in the sense
that the system finds itself esentially in its ground-state) can, to a very good approximation, be
described in terms of a single one-body wavefunction, which minimizes the appropriate Gross-Pitaevski
functional. In particular, this result becomes rigorously valid in the Gross-Pitaevski limit (see section
2.4), independently of possibly ellaborate varieties of trapping potentials, provided they satisfy the
general requirements of local regularity and confinement (limr→∞ V (~r) = ∞, see ref. [15]). Some
potentials, such as “many wells” potentials can lead to nearly degenerate solutions, so that restriction
to the single minimizer state may not be physically appropriate, as it artificially freezes the possibly
interesting dynamics which involves the quasi-degenerate group of modes. On the other hand, to the
extent that one increases the relevant sector of the phase space by considering many, quasi-degenerate
single-particle modes one also allows for a richer choice of observables, which may or may not be in fact
brought to measurement procedures in the laboratory. One may therefore expect that closer scrutiny
of the measurement processes also becomes more relevant in this context. This final chapter will be
dedicated to “a bird’s eye view” of these topics. Before turning to the modeling of many-mode setups,
it is useful to review some typical experimental facts observed in connection with such situations.

5.1 Quick survey of phenomena with some interpretation hints

A most famous first observation is that of Andrews et al.[51], in which a sausage shaped condensate
is pinched in the middle by a very high optical barrier, which essentially cuts it in two pieces. When
these are allowed to expand by removal of the trap and barrier, they generate interference fringes
visible under absorption imaging. This experiment has been carefully analysed in ref. [52], in terms
of a time-dependent Gross-Pitaevski initial conditions problem in a way which is consistent with the
use of a single, initially bi-localized wavefunction. The observed interference fringes can in this case
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be obtained from the one body density. Thus, if after expansion the time evolved wavefunction can
be represented over some region as a superposition of two plane waves (the two different momenta
resultung from contributions of the two initially disjoint parts to the amplitude in that region), then
the density is there given by

φ(~r) ∼ aei
~k1·~r + bei

~k2·~r −→ ρ(~r) = |a|2 + |b|2 + 2 Re
(

ab∗ei(
~k1−~k2)·~r

)

This is then simple one body interference, the many body nature of the condensate serving just
obtaining the necessary measurement statistics in one shot[53].

A different type of interference effect which may occur in a many boson system was pointed out,
even before the experiment of Andrews et al., by Javanainae and Yoo[54]. This type of interference does
not appear in the one-body density and is basically a correlation effect, requiring the implementation
of a many body observable for its direct measurement. To illustrate it in the simplest possible way,
consider the state of two free identical bosons

Φ(~r1, ~r2) =
1√
2V

(

ei
~k1·~r1ei

~k2·~r2 + ei
~k1·~r2ei

~k2·~r1
)

.

The full probability density associated with this exchange correlated wavefunction is

|Φ(~r1, ~r2)|2 =
1

V2

(

1 + cos(~k1 − ~k2) · (~r1 − ~r2)
)

=
2

V2
cos2

(~k1 − ~k2) · (~r1 − ~r2)

2

which shows interference fringes in the relative position of the two bosons. Thus, interference fringes
would be seen in the reiterated measurement of the relative position of the two bosons in identically
prepared systems. At the same time, the one body density associated with the two boson wavefunction
Φ(~r1, ~r2) is easily seen to be constant, so that reiterating a one body position measurement yields a
flat distribution. The point of Javanainen and Yoo in ref. [54] is that a similar situation ocurs
when N/2 particles occupy each one of two plane-wave states, in the sense that the measurement
of N − 1 conditional positions, each measurement being conditioned by all the preceding results

shows interference fringes similar to those observed in the one-body density in the case of single
wavefunction consisting of the superposition of two plane waves. A single full set of conditioned
position measurements, for sufficiently large N (N = 1000 in a simulation shown in ref. [54]) in fact
exhibits the many body exchange correlation fringes clearly enough.

Recently, a related experiment has been reported by Shin et al.[55] involving however entirely
different aspect-ratios, as in this case an elongated condensate was divided lengthwise into two also
very elongated parts by a controlable barrier.

A different setup which again can be interpreted in terms of the dominance of a single, multiply split
wavefunction occurs in the experiment of Anderson and Kasevich[56]. Here the vertically arranged
∼ 30 portions of a multiply split condensate are allowed to leak, the various leakages suffering free
falls from their respective initial positions. Under these conditions one observes at a given time the
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Figure 5.1: Intensity I(q) (in arbi-
trary units) obtained from eq. (5.1)
with n = 6 and the realistic param-
eters for the Anderson and Kase-
vich experiment q0 = .425 µm and
2
3
M
h̄

√
2g q

3/2
0 = 1.130. The horizon-

tal scale is in µm. Compare with
fig. 4 of ref. [56].
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existence of zones of measurable density, which can be accurately reproduced in terms of constructive
interference of n free falling coherent WKB amplitudes

I(q) =





n−1
∑

j=0

√

2π

kj(q)
senϕj(q)





2

(5.1)

where

kj(q) =

√

2M2g

h̄2 (q + jq0)

and

ϕj(q) =

∫ q

−jq0
k(q′)dq′ =

∫ q

−jq0

M

h̄

√

2g(q′ + jq0) dq
′ =

2

3

M

h̄

√

2g (q + jq0)
3/2.

The vertical axis q is oriented downwards and the positions of the leaky condensate portions are −jq0,
j = 0, . . . , (n− 1).

A more recent but to a certain extent similar situation occurs in the experiment of experiment
of Cataliotti et al.[57], in which a trapped condensate is subjected to a comb of optical barriers
before being released. Measured density profiles after an allowed expansion time shows two ejected
portions travelling in opposite directions away from a central residual portion. A very schematic “one
wavefunction” model for this behavior is provided by the behavior of the density associated with the
free evolution of an initial wavefunction given by

φ(x) ∝ e−
x2

2b2 cos2 kx , kbÀ 1.

Since cos2 kx = (1 + cos2kx)/2, this wave function is in fact the coherent superposition of three wave
packets moving with mean velocities 0 and ±2h̄k/M respectively. If the cos2 kx modulation of the
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Figure 5.2: Schematic representation of
a two-well trap, with the correspond-
ing lowest energy single-particle doublet.
The lowest member of the doublet has a
nodeless wavefunction ϕ1, and the energy
splitting ∆E ≡ E2 − E1 determines the
oscillation period between the two non-
stationary, localized states (ϕ1 ±ϕ2)/

√
2

as 2πh̄/∆E.

E2

E1

ϕ
1

ϕ
2

V

gaussian is replaced by a more general periodic function, Fourier analysis would give analogous results
involving a richer superposition of differently moving wavepackets.

Still more recently, Greiner et al.[58] observed similarly produced three dimensional arrays of
condensate pieces. Here, by varying the barrier height between neighboring sites they have been
able to observe interference patterns following removal of the trap which changed markedly with the
eventual blurring of the interference pattern. This has been interpreted in terms of the confinement
of atoms to definite sites in the case of sufficiently high barriers, with loss of definite phase relation
between different pieces of the original condensate, in the manner of a bosonic Mott transition.

5.2 Simple models for split condensates

The simplest case of a system with many modes is a system with two modes and, appart from its
direct relevance to experimental setups like those of refs. [51, 55], it will be useful to analyse this case
in detail also in order to see what is really involved and what simplifications can be introduced in the
modeling of more complicated situations. Note that the systems considered in section 3.3.2 are in fact
two mode systems, but the two modes there refer to two different types of boson (e.g.two different
internal states of a given atomic spacies), while here the focus will be on a sigle type of boson evolving
in a nearly degenerate pair of spatially orthogonal modes.

A typical situation of this kind arises in the case of a double-well trap such as the one represented
schematically in fig. 5.2. Laboratory situations are of course three-dimensional and can be arranged
in a variety of aspect ratios, ranging e.g. from long sausages pinched at the middle by an imposed
barrier[51] to also long sausages split lengthwise in half by an interposed wall[55]. Different aspect
ratios imply also different energy ratios of excitations in directions transverse to that crossing the
barrier, and it will be assumed that these excitations are in any case much higher than the doublet
splitting. In this case a possible simplification of the problem consists in restricting the dynamics to
a two-mode phase space. This is implemented introducing the creation operators
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a†± =

∫

d3r u(r⊥)ϕ±(z)ψ†(~r) , ϕ±(z) =
ϕ1(z) ± ϕ2(z)√

2
,

the function u(r⊥) being the frozen transverse wavefunction and ϕi(z), i = 1, 2 being the quasi-
degenerate longitudinal eigenfunctions for the lowest doublet in the two-well trap. In this way, ϕ±(z)
are localized, non-stationary wavefunctions peaking in each of the two sides of the barrier.

The basic hamiltonian to be used to characterize the dynamics of the system is the usual second-
quantized effective hamiltonian with the contact two-body effective interaction (2.5) restricted to the

two modes. This restriction is easily implemented using for the field operators the substitution

ψ(~r) −→
∑

±

u(r⊥)ϕ±(z)a± , ψ†(~r) −→
∑

±

u∗(r⊥)ϕ∗
±(z)a†±

which, after some trimmings to be discussed shortly, gives

Heff
∼−→ HBH ≡ E+a

†
+a+ + E−a

†
−a− + α

(

a†+a− + a†−a+

)

+

+
Λ+

2
a†+a

†
+a+a+ +

Λ−

2
a†−a

†
−a−a− . (5.2)

Here the constants E± stand for the diagonal matrix elements

E± = 〈uϕ±|
p2

2M
+ V |uϕ±〉.

Note that if the delocalized functions uϕi, i = 1, 2 are taken as eigenfunctions of p2/2M + V with
eigenvalues Ei, then E+ = E− = (E1 + E2)/2. The parameter α stands for the off-diagonal matrix
elements

α = 〈uϕ±|
p2

2M
+ V |uϕ∓〉, (5.3)

taken to be equal, the wavefunctions being both real. Again, for eigenfunctions of p2/2M + V one
finds that α = (E1 − E2)/2 < 0. This reveals, in particular, that this term is related to the periodic
tunneling of partiches across the barrier.

The two-body part in fact gives rise to sixteen terms involving space integrals of the various distinct
products of four mode wavefunctions uϕ±. Due to the localized character of these wavefunctions,
however, integrals over products of four wavefunctions that are not all equal are much smaller than
the two which have been retained. The parameters Λ± are therefore essentially equal and given by

Λ± = λ

∫

d3r u4(r⊥)ϕ4
±(z) .
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The trimmed hamiltonian (5.2) is nothing but a bosonic version of a two-site Hubbard model (in
short, the two-site Bose-Hubbard model), in which the “hopping” term relates to tunneling between
different wells and there is an “in site” two-body interaction, in addition to possibly different one-body
site energies. The above “derivation” can moreover be extended to more sites and/or dimensions, by
picking Wanier functions[59] as the appropriate generalization of the two-well localized wavefunctions.
The standard form of the trimmed model hamiltonian is

HBH =
∑

i

Eia
†
iai + α

∑

<i,j>

(

a†iaj + a†jai
)

+
Λ

2

∑

i

a†ia
†
iaiai , (5.4)

where < i, j > in the second sum denotes that the sites i and j are neighbors.
This argument shows therefore that, in presence of a spatially periodic trap potential which gives

rise to a large number of quasi-degenerate independent modes one can, by restricting the phase space to
just the quasi-degenerate modes, using a representation in terms of localized wavefunctions (typically
a “single” Wanier function) one is led, with only some mild trimmings, from the Gross-Pitaevski
problem to the Bose-Hubbard model. The restriction to the quasi-degenerate modes is the most
severe limitation of the Bose-Hubbard model. This restriction in fact constrains the rendering of the
dependence of effective mean-field properties on degrees of freedom kept active in the model, such
as mean occupations of the different sites. While in the Gross-Pitaevski treatment this is taken into
account by the nonlinear term, in the Bose-Hubard model it is limited by freezing once and for all a
set of quasi-degenerate orbitals, such as the wavefunctions uϕ1 and uϕ2 in the case of the two-well
trap of fig. 5.2.

5.3 Results for a two-well system

In this case one considers the hamiltonian (5.2) with E+ = E− = 0 and Λ+ = Λ− = Λ, i.e.

HBH = α
(

a†+a− + a†−a+

)

+
Λ

2

(

a†+a
†
+a+a+ + a†−a

†
−a−a−

)

. (5.5)

and realizes imediately to have been left with a particular case of the hamiltonian that was considered
in section 3.3.2. In particular, since the confining trap is taken into account in terms of the choice
made for the relevant orbitals uϕi, i = 1, 2, there is no explicit reference to the position degree of
freedom besides that which is related to the indices ± and the localized character of the corresponding
orbitals. Furthermore, there are no two body interactions between bosons in different sites, and the
total number of bosons

N̂ = a†+a+ + a†−a−

is clearly a constant of motion.
A convenient way of dealing with the two-mode hamiltonian (5.5) within a sector of the second-

quantized phase space having a definite number of particles N is to define the operators
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J± = J1 ± iJ2 ≡ a†±a∓ , J3 ≡ a†+a+ − a†−a−
2

, J ≡ a†+a+ + a†−a−
2

=
N̂

2
,

which constitute Schwinger’s well known realization of the angular momentum algebra it terms of
two bosonic modes[60]. They are therefore frequently refered to as “quasi-spin” operators in this
context[31]. The role played by the operator J is revealed by the relation

J2
1 + J2

2 + J2
3 = J(J + 1) =

N̂

2

(

N̂

2
+ 1

)

,

so that the value of the quasi-spin is half the number of bosons in the considered sector. The two-site
hamiltonian (5.5) can be expressed in terms of the quasi-spin operators as

HBH = 2αJ1 +
Λ

2
[(J + J3)(J + J3 − 1) + (J − J3)(J − J3 − 1)]

= 2αJ1 + ΛJ(J − 1) + ΛJ2
3 . (5.6)

The second term is a constant of motion, and the two remaining terms are non-commuting cartesian
components of the quasi-spin. This reveals at once that one can diagonalize the hopping term pro-
portional to α by choosing a representation in terms of the simultaneous eigenvectors of the square
of the total spin and of the component J1, and in this case the on-site two-body effective interaction
term will have off-diagonal matrix elements. Or, alternatively, one can diagonalize the on-site two-
body effective interaction term, by choosing instead the representation in which J(J − 1) and J3 are
diagonal, and in this case the hopping term will have off diagonal matrix elements. The ground state
for α = 0, which implies a completely impermeable barrier, is the state |J = N/2, J3 = 0〉 which cor-
responds to an equal number of bosons in each well (assuming N to be even, and a repulsive effective
two-body interaction). Conversely, the ground state in the case Λ = 0, and assuming α < 0 (cf. the
discussion following eq. (5.3)), is the state |J = N/2, J1 = N/2〉. To see what this state is, recall the
relations between the localized wavefunctions uϕ± to the quasi-degenerate, delocalized wavefunctions
uϕ1,2 which imply the relations

a± =
a1 ± a2√

2

where the anihilation operators a1,2 are associated to the quasi-degenerate single particle state rather
than with the localized states. Straightforward algebra then gives immediately

2J1 = a†+a− + a†−a+ = a†1a1 − a†2a2 ,

so that the eigenstate |J = N/2, J1 = N/2〉 is the state in which all N particles are in the lowest one
of the quasi-degenerate single particle doublet, and therefore fully delocalized. It can be expressed in
terms of the common normalized eigenvectors of J(J + 1) and J3 after a simple calculation:
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|J = N/2, J1 = N/2〉 =
1√
N !

(

a†1

)N
|0〉 =

1√
N !

(

a†+ + a†−√
2

)N

|0〉 =

=
1

2N/2
√
N !

N
∑

n=0

(

N
n

)

(

a†+

)N−n (

a†−

)n
|0〉 =

=
1

2N/2

N
∑

n=0

√

√

√

√

(

N
n

)

|J = N/2, J3 = (N − 2n)/2〉 . (5.7)

It will be convenient to refer to the alternate representations in which the hopping term and the on-site
two body effective interaction are diagonal simply as the J1 representation and the J3 representation
respectively.

The preceding discussion provides enough elements for a qualitative understanding of the dynamics
implied by the model hamiltonian (5.5). One sees that the hopping term favors delocalization of the
particles so as to promote the relevance of the lowest member of the quasi-degenerate doublet; and
that, on the contrary, the on-site two body effective interaction favors the most symmetric state of
the J3 representation, having J3 = 0, which means half of the particles localized in each of the two
wells. In general the spectrum of HBH will consist of N + 1 states in the N boson sector. The
eigenvalues and eigenvectors can be obtained by diagonalizing the hamiltonian matrix in any of the
two representations.

5.3.1 Semi-classical domain

A semi-classical domain exists for N À 1, and in this case a formulation of the dynamics in classical
terms may be useful. To this effect, consider, instead of the three operators Jk, k = 1, 2, 3, which have
eigenvalues in the interval −J to +J , their scaled couterparts

jk ≡
Jk
J
, J =

N

2

which have eigenvalues in the range −1 to +1. The spectrum of the scaled operators therefore becomes
very dense in the semiclassical regime and may be treated as a continuous variable. At the same time,
from the angular momentum commutation relations satisfied by the Jk, namely

[Jj , Jk] = iεjklJl ,

where εjkl is the completely antisymmetric symbol, it follows that

[jj , jk] =
2i

N
εjkljl
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so that the scaled operators approximately commute in the semiclassical domain N À 1. Furthermore,
in this domain the object

{jj , jk} ≡ N

2i
[jj , jk] = εjkljl (5.8)

plays the role of the Poisson brackets of the dynamical variables represented by the scaled operators.
The quasi-spin hamiltonian per particle can now be written in terms of the scaled operators as

1

2J
HBH ≡ hBH = αj1 +

ΛN

4

(

1 +
1

N

)

+
ΛN

4
j23 .

Recall that the parameter Λ is related to the “basic” strength parameter λ = 4πh̄2a/M of the effective
two body interaction by an integral over the fourth power of the mode wavefunctions, which is if the
order of magnitude of the inverse volume of the system. Therefore ΛN is of the order of the constant
λ times the mean density of the system.

To the extent that the ji can be treated as classical variables, this hamiltonian can be used to
obtain their equations of motion by using the Poisson brackets (5.8). In this way one obtains

dji
dt

= {ji, hBH} , i = 1, 2, 3

from which it it easy to check that
∑3
i=1 j

2
i is a (classical) constant of motion. The variables ji are in

fact the cartesian components of a unit, classical quasi-spin vector which rotates in time as dictated by
the equations of motion. The variable which is canonically conjugated to j3 ≡ cosθ is the azimuthal
angle ϕ of this rotating vector, θ being the usual colatitude. The “classical” hamiltonian (cf. ref. [61])
can thus be written in terms of canonical variables j3, ϕ as

h
(cl)
BH =

ΛN

4

(

1 +
1

N
+ j23

)

+ α
√

1 − j23 cosϕ . (5.9)

Here the relation sin θ =
√

1 − j23 has been used. Note that, since 0 ≤ θ ≤ π, the suare root must be
taken with positive sign.

The canonical equations of motion are

dϕ

dt
=

ΛN

2
j3 − α

j3
√

1 − j23

cosϕ

dj3
dt

= α
√

1 − j23 sinϕ ,

and the classical stationary states are at the values of ϕ and j3 for which the time derivatives vanish.
This implies sinϕ = 0, so that ϕ = 0 or ϕ = π, the coresponding values of j3 being respectively the
solutions of
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j3





ΛN

2
− α cosϕ
√

1 − j23



 = 0 , cosϕ = ±1 .

Thus solutions j3 = 0 with α = 0 or π always exist, other solutions being given by
√

1 − j23 =

2α cosϕ/ΛN . For α < 0 only the possibility ϕ = π remains for these other solutions, which furthermore
will exist as real numbers only if 4α2 < Λ2N2. The minimum energy static solution for α < 0 is at
j3 = 0, ϕ = 0. Other solutions correspond in this case to maxima or saddle points of the hamiltonian
surface in the j3 × ϕ phase space. An example of the surface representing the classical hamiltonian
(per particle) (5.9) can be seen in fig. 5.5 (a) below.

It is worth noting that these semi-classical results can also be obtained by using as ansatz for the
hamiltonian (5.5) a product of coherent states for the two modes

|z+z−〉 ≡ ez+a
†
+
−z∗

+
a+ez−a

†
−−z∗−a− |0〉

and introducing explicitly the constraint |z+|2 + |z−|2 = N together with the definition j3 ≡ (|z+|2 −
|z−|2)/N . The expectation value of the hamiltonian (5.5) turns out to be just (5.9), the angle variable
ϕ being the relative phase between the two coherent condensates, ϕ = Arg(z+z

∗
−). This then provides

for an interpretation of the angle variable of the quasi-spin treatment. The fact thet this angle variable
is canonically conjugate to j3, which measures the population inbalance of the two localized states,
indicates that, in a quantum regime, the population inbalance and the relative phase of the condensates
are quantities which maintain complementarity relations to each other.

5.3.2 Quantum domain

The quantum mechanical ground state of the two-site Bose-Hubbard hamiltonian in either of the forms
(5.5) or (5.6) cannot be associated with a sharp value of J3 (i.e., of the population inbalance) due to
the presence in the hamiltonian of the hopping term, proportional to J1 and therefore non commuting
with J3. Since the total number of particles is a constant of motion, this means that there will be
correlated quantum fluctuations of the two number operators, a†+a+ and a†−a−.

The quasi-spin representation, including the fact that the operator J(J + 1) is a constant of
motion, makes the problem “soluble”, in the sense that eigenvalues and eigenvectors can be obtained
from the diagonalization of finite matrices. In such a numerical procedure, the eigenvectors in the J3

representation

HBH |En〉 = En|En〉 , |En〉 =
J
∑

m=−J

c(n)
m |J,m〉, (5.10)

give directly the corresponding distributions of the occupation ratios for the two localized states in the

form of the arrays of 2J +1 = N +1 numbers {|c(n)
m |2}. The corresponding distribution in the relative
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phase between the two condensates, which is conjugate to the distribution of occupation inbalance, can
be obtained by taking a discrete Fourier transform of the energy eigenvectors in the J3 representation

c̃(n)
ν =

1√
2J + 1

J
∑

m=−J

e
2πiνm
2J+1 c(n)

m , −J ≤ ν ≤ J .

It is then given by the array {|c̃(n)
ν |2}, which is complementary to the array which describes the

distribution of occupation ratios. Examples of such distributions are shown in fig. 5.3 (a) for two
different heights of the interwell potential barrier. Note that these are discrete distributions, whose
entries are labeled respectively by the eigenvalue m of J3 (or, equivalently, by 2m/N) and by the
discrete set of angles 2πm/(2J + 1) = 2πm/(N + 1), which appear in the discrete Fourier transform.

Alternatively, one can visualize both distributions simultaneously by calculating a discrete Wigner
distribution directly from the amplitudes which appear as expansion coefficients of the considered
energy eigenstate |En〉 in the J3 representation as in eq. (5.10). This procedure has been used in ref
([31]) and is discussed in detail in ref. [62]. It is implemented basically in the following steps. Given

the array of aplitudes {c(n)
m }, −J ≤ m ≤ J , and assuming that J is an integer, which implies that N

is even, one first constructs the matrix

r(k, l) =
1√

2J + 1

J
∑

m=−J

c(n)
m c

(n)∗
{m+l} exp

[

− 2πi

2J + 1
k(m+

l

2
)

]

where the range of the integers k and l is −J ≤ k, l ≤ J and the index {m + l} denotes the value of
m+ l cyclically confined to the range −J, J of the basis labels. Explicitly, one has

{m+ l} = m+ l − (2J + 1) Floor

(

m+ l + J

2J + 1

)

where Floor(x) denotes the largest integer (negative for x < 0) less than or equal to x. The desired

discrete Wigner phase-space representative c
(n)
w (p, q) of the state | En〉 is then obtained as the double

(discrete) Fourier transform

(2J + 1) aw(p, q) =
1√

2J + 1

∑

k,l

exp

[

2πi

2J + 1
(pk + ql)

]

r(k, l).

In this expression the range of the integers p and q is also bounded as −J ≤ p, q ≤ J , and the
properly scaled variables corresponding to j3 and ϕ are q/J and 2πp/(2J + 1) respectively. The
Weyl transform of the hamiltonian can be obtained in exactly the same way, replacing the amplitude

products c
(n)
m c

(n)∗
{m+l} by the matrix elements 〈J,m | hBH | J, {m + l}〉 multiplied by the number of

states 2J + 1, when evaluating r(k, l).
Fig. 5.3 (b) shows the discrete Wigner functions for the ground states whose population inbalance

and relative phase distributions are shown in the parts (a). The latter can in fact be obtaining by

92



20 40 60 80

0.2

0.4

0.6

0.8

(a)

(b)

-2

0

2
angle

-1

-0.5

0

0.5

1

action

0

0.005

0.01

0.015

-2

0

2
angle

20 40 60 80

0.1

0.2

0.3

0.4

(a)

(b)

-2

0

2
angle

-1

-0.5

0

0.5

1

action

0

0.01

0.02

-2

0

2
angle

Figure 5.3: Top: (a)Distributions of population inbalance (full line) and relative phase (dashed line)
for the ground state of the two site Bose-Hubbard model with N = 80, α = −1.0 × 10−4 Hz and
Λ = 0.0146 Hz). In the case of the population inbalance, the labels on the horizontal axis are to be
read as 2(m+J), −J ≤ m ≤ J = 40. In the case of the relative phase distribution they are to be read
as 40(1+ϕ/π), which corresponds to ϕ = −π at the origin and ϕ = π at full scale; (b) Discrete Wigner
function for the same case. The axis labeled “action” refers to j3, that labeled “angle”refers to ϕ.
Bottom: Same as the top figures, with the barrier somewhat lowered (Λ unchanged, α = −1.9×10−3

Hz). One sees clearly the better definition of the relative phase and some loss in the definition of the
population inbalance between the two wells.
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Figure 5.4: Discrete Wigner func-
tion for the ground state of the two-
site Bose-Hubbard hamiltonian for
N = 80, Λ = 0.0146 and α = −0.1.
The classical lowest energy state is
represented in this phase-space di-
agram by the single point ϕ = 0,
j3 = 0. Increasing the number of
particles decreases the relative vari-
ances of the population inbalance
and relative phase distributions.

-2

0

2
angle

-1

-0.5

0

0.5

1

action

0

0.01

0.02

-2

0

2
angle

summing the Wigner function over the complementary variable. The case of a still stronger hopping
term, α = .1, also for N = 80, is shown in fig. 5.4. The Weyl transform of the corresponding quantum
hamiltonian is shown in fig. 5.4 (b), while part (a) of the same figure shows its classical version.

There is a somewhat subtle property of the hamiltonian which gives rise to an important property of
its eigenstates, concerning the experimentally important class of one-body observables. This property
is best expressed in terms of the number operators for the J1 representation, namely those associated
with the delocalized members uϕi, i = 1, 2 of the active doublet, a†iai, i = 1, 2. It consists in the fact
that, even though these number operators are not themselves constants of motion, the hamiltonian
does not mix eigenstates of either of them whose eigenvalues differ by an odd number of particles; or,
in different words, the hamiltonian admits the modular constants of motion

Pi ≡ (−1)a
†
i
ai , i = 1, 2 , i. e. [Pi, HBH ] = 0 , i = 1, 2 . (5.11)

This poperty can be easily verified by re-expressing the hamiltonian (5.5) in terms of the operators ai,

a†i and noting that each term either maintains the occupancy of each state fixed or changes it by two

particles. Due to the conservation of the total number of particles the number operators a†iai, i = 1, 2

are themselves correlated, so that it is sufficient to consider just one of them, say a†1a1.
As a consequence of this property, the eigenvectors of (5.5) can be chosen to be simultaneous

eigenvectors of P1 (they will automatically fulfill this property except for reasons of degeneracy)
and as such divided in two classes according to the eigenvalues of the modular constants of motion.
In particular, a non-degenerate ground state |Φ0〉 will be an eigenstate of P1. This has important
consequences for its one-particle density matrix

ρ(~r, ~r′) ≡ 〈Φ0|ψ†(~r′)ψ(~r)|Φ0〉 ,
which in the case in hand can be expressed as a two by two matrix in the J1 representation

ρ =

(

〈Φ0|a†1a1|Φ0〉 〈Φ0|a†2a1|Φ0〉
〈Φ0|a†1a2|Φ0〉 〈Φ0|a†2a2|Φ0〉

)

.
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Figure 5.5: (a) Energy surface representing the classical Bose-Hubbard hamiltonian for two sites, eq.
(5.9) multiplied by the number of particles (N = 80), for Λ = 0.0146 and α = −0.1; (b) Discrete Weyl
transform of the quantum hamiltonian for N = 80 and for the same values of Λ and α.

In fact, the operators appearing in the off-diagonal matrix elements change the eigenvalue of P1, and
therefore their expectation value vanishes when taken with respect to an eigenstate of this operator.

As a consequence of the modular constant of motion P1 we find therefore that the one body density

matrix is diagonal in the J1 representation. This means that the delocalized states uϕi, i = 1, 2 are
the natural orbitals which carry the coherence properties which are relevant for one-body observables.
Correlations introduced into the ground state by the non comitativity of the hopping term and the
on-site two-body effective interaction will affect just the relative weights of the two quasi-degenerate
modes. This immediately suggests a considerable stability of any one body interference patterns as-
sociated with the nature of the doublet wavefunctions, the effect of many-body correlations being
manifest rather in their visibility. These patterns are in fact entirely determined by the one body
density matrix, wuich in the J1 representation takes the form

ρ = A 1̂ +B |uϕ1〉〈uϕ1|

where 1̂ is the unit 2 × 2 matrix. Since Tr ρ = N , one has 2A+B = N and J1 = B/2, or j1 = B/N ,
and the parameter relevant for the visibility is J1 (or j1, or B). For the two cases shown in fig. 5.3, in
which N = 80 and the dominant term in the hamiltonian is the on site two body effective interaction,
with Λ = 0.0146 Hz, one has B = 36.3 (for α = 1.0 × 10−4 Hz), which corresponds to j1 = .454, and
B = 68.9 (for α = 1.0 × 10−3 Hz), which corresponds to j1 = .860.
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5.4 Many site one dimensional arrays, periodic boundary conditions

A more general class of systems to which many of the above results still apply is that of one-dimensional
arrays of condensate fractions with periodic boundary conditions, which has been studied recently,
form a mean-field point of view, by Paraoanu[63]. The idea is to arrange νc condensate fractions in
a “circular array”, so that the the the first one is also next to the νc−th one. The Bose-Hubbard
hamiltonian for this system has the form (5.4) with degenerate sites (Ei = 0 for i = 1, . . . , νc), i.e.

H
(νc)
BH = α

∑

<i,j>

(

a†iaj + a†jai
)

+
Λ

2

νc
∑

i=1

a†ia
†
iaiai , (5.12)

where the sum over nearest neighbors includes the term a†1aνc + a†νc
a1. The operators ai, a

†
i , i =

1, . . . , νc refer to the single particle states of a localized (Wanier) base. One car however introdice a
complementary base by defining the alternate creation and anihilation operators

A†
n ≡

νc
∑

k=1

e−
2πink

νc a†k , n = 0, . . . , νc − 1

in terms of which the hamiltonian becomes

H
(νc)
BH = 2α

νc−1
∑

n=0

cos
2πn

νc
A†
nAn +

Λ

νc

νc−1
∑

n,p,q=0

A†
q+nA

†
p−nApAq , (5.13)

i.e., in the complementary base the hopping term is diagonal. The indices n, p and q in the two body
term run from 0 to νc − 1, and the indices q + n, p − n are to be understood as modulo νc (e.g.
νc + 2 ≡ 2, −νc + 1 ≡ 1, ±νc ≡ 0). The structure of this term therefore reveal the conservation of the
“modular momentum” associated to the index of the creation operators of the complementary base.

Thus the complementary base plays in this case the same role as the J1 representation in the two-
site case. Not only it diagonalizes the pure hopping (Λ = 0) hamiltonian, but also diagonalizes the
one-body density matrix associated with the simultaneous eigenstates of HBH and of this “modular
momentum”. This constant of motion allows now for the classification of the energy eigenstates of the
model in νc classes according to the value of the total modular momentum. Thus, for an eigenstate
|Φ0〉,

ρpq ≡ 〈Φ0|A†
qAp|Φ0〉 = npδpq .

In fact, when q 6= p the operator defining the one body density matrix element changes the value of
the total modular momentum of |Φ0〉, so that the coresponding matrix element vanishes. One has
therefore again a situation showing marked propensity for the preservation of one-body interference
patterns, even if with varying degrees of visibility, as the competition of hopping and on site two body
interactions reduces the coherence of the one body density matrix.
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Figure 5.6: Dependence of occupation
numbers #(diagonal matrix elements of
the one body density matrix in the com-
plementary representation) with hopping
parameter α. The two body interaction
parameter is Λ = 1+α. Occupation num-
bers are calculated with a mesh of 0.1 in
α. In this case N = 10 and νc = 5. The
two lowest occupations are doubly degen-
erate each and correspond to the n 6= 0
states. The upper points corespond to
the n = 0 state. -0.8 -0.6 -0.4 -0.2
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The hamiltonians (5.12) and (5.13) are also “soluble” in the same sense as the two site Bose-
Hubbard hamiltonian, i.e., eigenvalues and eigenvectors can be obtained by numerical diagonalization
of finite (if possibly very large) matrices. These methods again indicate considerable permanence of
large occupations of the n = 0 state of the complementary base in the ground state one body density
matrix up to fairly strongly dominating on site two body interaction effects. An example of this
is shown in fig. 5.6, where results for a loop containing five condensate fragments with a total of
ten particles are shown. The occupations of the five different states of the complementary base are
such that those corresponding to n and νc − n are equal. This then gives in general three different
occupation numbers, two of which appearing twice. The non doubled occupation os that for n = 0,
which dominates over the range |α|/Λ >∼ 0.1.
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Mars 2003, Vol. 1, 1 (2003). I am indebted to Walter Wreszinski for making this reference available
to me.

[9] E. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, N.Y., 1965, Ch.
23.

[10] Ph. W. Courteille, V. S. Bagnato and V. L. Yukalov, Laser Physics 11 659 (2001).

[11] See A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, MacGraw-Hill
Book Co., 1971, section 41, and references therein, especially the “anschaulich” treatment of L.
C. Gomes, J. D. Walecka and V. Weisskopf, Ann. Phys. (N.Y.) 3, 241 (1958).

[12] K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 and 1128 (1957); K. Sawada, Phys. Rev.

116, 1344 (1959).

98



[13] C. A. Sacket, C. C. Bradley, M. Welling and R. G. Hulet, Appl. Phys. B65, 433 (1997); C. A.
Sacket, J. M. Gerton, M. Welling and R. G. Hulet, Phys. Rev. Lett. 82, 876 (1999); J. M. Gerton,
D. Strekalov, I. Prodan and R. G. Hulet, Nature 408, 692 (2000).

[14] A. Gammal, L. Tomio and T. Frederico, Phys. Rev. A66, 043619 (2002) and references therein.

[15] E. H. Lieb, R. Seiringer and J. Yngvason, Phys. Rev. A61, 043602 (2000).

[16] See e.g. P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer Verlag 1980, section
5.6.

[17] F. Dalfovo, L. Pitaevski and S. Stringari, Phys. Rev. A54, 4213 (1996).

[18] J. P. Burke, C. H. Greene and J. L. Bohn, Phys. Rev. Lett. 81, 3355 (1998).

[19] M. Koashi and M. Ueda, Phys. Rev. Lett. 84, 1066 (2000); M. Ueda and M. Koashi, Phys. Rev.

A65, 063602 (2002).

[20] C. K. Law, H. Pu and N. P. Bigelow, Phys. Rev. Lett. 81, 5257 (1998); H. Pu, C. K. Law, S.
Raghavan, J. H. Eberly and N. P. Bigelow, Phys. Rev. A60, 1463 (1999).

[21] Tin-Lun Ho and Sung Kit Yip, Phys. Rev. Lett. 84, 4031 (2000).

[22] E. H. Lieb and R. Seiringer, Phys. Rev. Lett. 88, 170409 (2002).

[23] E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, arXiv:math-ph/0204027 (11 Apr 2002).

[24] H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962).

[25] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic and W.
Ketterle, arXiv:cond-mat/0311617v1 (27 Nov 2003)

[26] E. Timmermans, P. Tommasini, M. Hussein and A. K. Kerman, Phys. Reports 315, 199 (1999).

[27] Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen and B. J. Verhaar, Phys. Rev.

Lett. 81, 69 (1998).
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