FAP 0152 - Introdução às Medidas em Física

Atividade Extra - Profa. Maria Fernanda (Turma do IME)

Parte I

- 1. Escreva algumas linhas dizendo o que você entende por uma medida e o valor verdadeiro de uma grandeza de interesse físico. Dentre todas essas grandezas existem aquelas que não são mensuráveis de maneira direta? Se sim, dê no mínimo um exemplo.
- 2. O que são os algarismos significativos de uma medida física seja ela direta ou indireta? Existe alguma relação entre eles e a incerteza associada a uma medição qualquer? Se sim, qual?

Parte II

Tomemos como objeto de nosso estudo um pêndulo simples; ou seja, um sistema físico constituído por um objeto de massa m não nula suspenso por um fio inextensível, cujo comprimento é L, com massa desprezível e que prende-se a um ponto fixo no espaço.

Supondo que no movimento do objeto as únicas forças que atuam sobre ele são as forças peso e de tração, a equação que descreve este movimento é dada por

$$m\frac{d^2\theta}{dt^2} + m\frac{g}{L}\sin\theta = 0 ,$$

onde $\theta: I \to \mathbb{R}$ é a função que descreve o ângulo existente entre o fio e um dos vetores do campo gravitacional durante o movimento¹.

Considerando que o pêndulo executa pequenas oscilações podemos assumir que $\sin\theta\approx\theta$. Assim a equação de movimento reescreve-se como

$$\frac{d^2\theta}{dt^2} + \omega^2\theta = 0 \quad , \quad \text{com} \quad \omega^2 = g/L \quad . \tag{1}$$

 $^{^1\}mathrm{Aqui}~g$ é o módulo da aceleração da gravidade.

- 1. Assumindo que a solução da equação diferencial homogênea (1) é da forma $\phi(t) = e^{rt}$, encontre a equação característica do problema. Quais são as suas raízes?
- 2. Considerando que r_1 e r_2 são as raízes da equação característica, demonstre que $\phi(t) = ae^{r_1t} + be^{r_2t}$ também é solução de (1), onde a e b são duas constantes arbitrárias.
- 3. Tendo em vista que $e^{\pm irt} = \cos{(rt)} + i\sin{(rt)}$, reescreva $\phi(t)$ em termos das funções seno e cosseno mostrando que $\phi(t) = A\cos{(\omega t)} + B\sin{(\omega t)}$ também é a solução de (1), onde A e B são duas constantes.
- 4. Usando o fato que as funções $\sin x$ e $\cos x$ têm período igual a $2\pi n$, onde $n \in \mathbb{N}$, prove que o período de $\phi(t)$ é

$$T_n = \frac{2\pi n}{\omega} = 2\pi n \sqrt{\frac{L}{g}} .$$

No caso, $T=T_1$ é o período fundamental do pêndulo simples.