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Motivation

Gamma Ray Bursts

G. Amelino-Camelia et al.,
Nature 393(1998)763.
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Dispersion Relation due to
Quantum Gravity correc-

tions(Strings, Loop Quantum
Gravity, Effective Theories)

J.A., H. Morales-Técotl and L.F. Urrutia, Phys.
Rev. Lett. 84(2000)2318.

JA, Phys. Rev.Lett. 94,221302(2005)

Ultra High Energy Cosmic Rays

In this part of the talk we are concerned with the
observation of wultra high energy cosmic rays
(UHECR), i.e. those cosmic rays with energies
greater than ~4 x 1018 eV.

- Although not completely clear, it has been sug-
gested that these high energy particles are possibly
heavy nuclei (we will assume here that they are pro-
tons).

- By virtue of the isotropic distribution with which
they arrive to us, they originate in extragalactic
sources.

The Greisen-Zatsepin-Kuz’min (GZK) cutoff

-Their propagation in open space is affected by the
cosmic microwave background radiation (CMBR),
producing a friction on UHECR making them release
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energy in the form of secondary particles and
affecting their possibility to reach great distances.

- Cosmic rays with energies above 1 x 10%° eV should
not travel more than ~ 100 Mpc.

The Auger Observatory has recently reported his
observations on the highest energy cosmic rays.

They see the GZK cutoff in the flux. But still some
of the cosmic rays have a trans GZK energy. This
means that Lorentz invariance violation may be nec-
essary to explain their presence, if nearby sources of
such cosmic rays are not found.
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The combined energy spectrum multiplied by E°,
and the predictions of three astrophysical models.
The input assumptions of the models (mass composi-
tion at the sources, the source distribution, spectral
index and exponential cutoff energy per charge at
the acceleration site) are indicated in the figure.



The model

Let us consider the Lagrangian

L(Faﬁ, Xu) = — V(Faﬁ) — F’V“&,X“, Fog = —
Fsq (1)
where the dual field F™" is

Fl//i — %eyua,@FaIB’ (2)

and the X, are just Lagrange multipliers that will

finally impose the condition that the remaining field

strength satisfies the Bianchi identity.

Our conventions are n,, =diag(+,—,—, — ),
V123 = 4+ 1, €93 =+ 1. To introduce a symmetry

breaking we proceed in the standard way by consid-

ering the potential

L o | B2
To find the vacuum configuration we have to
extremize the effective action, subjected to the con-
dition that F,,3 and X, are constant fields. Applying
these requirements to (1) plus the choice (3) we

obtain

oV
OFH

=0=(a+ BF?)F ., (4)

which is solved by a constant (F' E:Btr)a 5= Cap sub-
jected to the condition

a—

(F?) =5 =C"#0. (5)



The expansion around the minimum (C,,, C,) is
such that

Fop(z) = Cag+aap(z) (6)
Xy = CN_I_XN (7)

Next we consider the equations of motion arising
from (11) and show that the Lagrange multiplier
X, 1s fully determined up to gauge transformation

Xﬂ — X, +0,x. The equations are
ov.

8aaﬁ B

6X, @ erBd,a,5=0. (9)

danp : —€HPY, X, —2 0, (8)

Eq. (9) establishes that the two form a is closed, i.e.
d a = 0. The Hodge-De Rham theorem says that the
most general solution to this is obtained by requiring

a=dA+1s, (10)

where A is a one form, [ is a constant and s is an
harmonic two-form. Since in our case we naturally
have one such form at our disposal, arising precisely
from the chosen vacuum, we take

s = %Cu,/d zhd x¥

which is certainly harmonic because it is constant.

Calling d A= f we have
aop(x) =1Cop+ fap(). (11)



It is convenient to rename the dimensionless param-
eter [=& — 1. Defining

CW:%DW, B:§>O, (12)

where

f=3

(&% — 1)(C*PC,5) > 0,

(13)

(€2 =1)(C*"Cap)’

we obtain our final action

S(4a) = /d4az< - %[1 — D?B|D?* — ifwfﬁ“/ -
BD ™)+ (™)) (14)

where fas(x) = 0,43 — 03As. We recognize the
standard Maxwell kinetic term in the RHS of
Eq.(14). The only restriction now is B > 0, with
D? arbitrary.



Symmetry algebras arising from
different choices of the vacuum

VSR:A. G. Cohen and S. L. Glashow, Very special
relativity, Phys. Rev. Lett. 97 (2006) 021601

In this section we study the possible vacua allowed
by the tensor symmetry breaking and also identify
the corresponding subgroups of the Lorentz group
which are left invariant after the breaking. In order
to do this, it is convenient to parameterize the back-
ground field D, in terms of three dimensional com-
ponents

D;; = — €ijmbm, Doi=e€;, €123=1 (15)
I 0 €1 €92 €3 ]
— €1 0 — b3 bg

— €9 b3 0 — bl (16)
— €3 — b2 bl 0

[D/w] —

which will mix when going to another reference
frame via a passive Lorentz transformation. Since we
have two vectors that determine a plane we choose a
coordinate frame where

b = (0, 0, b), e = (0, ey = lelsin ¢, e3 =
le[cos ), (17)



That is to say, we have chosen the plane of the two
vectors as the (z — y) plane, with the vector
b defining the z-direction and 1) being the angle
between b and e. In this way the matrix repre-
senting the vacuum is

I 0 0 €y €3 ]
0 0 —b 0
[D/JV] o — e9 b 0 0 : (18)
| —e3 0 0 0 |
The most general infinitesimal generator G,

including Lorentz transformations plus dilatations is

I < I Io I3 ]
G=[G! |=—i| " = —¥ 92| (19)
2 Y3 <  — U
T3 — Y2 Y z

Motivated by previous work, we are including con-
formal dilatations D among our generators. Within
this restricted Poincare algebra, this generator com-
mutes with the remaining ones corresponding to
pure Lorentz transformations and can be realized as
a multiple of the identity. We do this in order to
explore the possibility of having the largest possible
invariant sub-algebra after the symmetry breaking.

Summarizing, all the two-parameter subalgebras that
leave the vacuum invariant are isomorphic to T'(2),
while the only three-parameter subalgebra , corre-
sponding to the case (E-2), is isomorphic to

HOM(2).



Subcase E-2

Here we have
b’ —e5=0—b=sey, s==%1 (20)

which corresponds to a plane wave VEV.

We have
y1=0, x1=—-252, T2=—5Y3, Y2=573 (21)

Here we are left with a three parameter Lie algebra
(z, x3, y3) and the generator is

G:—z(23K1—|—i1) —|—:I:3(K3—SJ2) —y3(3K2—|—
J3) (22)
Defining

GZ:—(ZsKl—I—iI), G,=K>—sJ?, Gy:—(J3+
s K?) (23)
we obtain the algebra

G, Gg| = 21 G, [G,, Gy| =20 Gy, |Gy, G| =
0 (24)
which is isomorphic to HOM(2).
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The equations of motion: the
propagating sector

To study the propagation properties we consider
only the quadratic terms in the Lagrangian

LO:_ifpufuy_B(fuuDuy)2a (25)

where we recall that f,g = 0,43 — 03A,. The equa-
tions are

(0245 — 950°Ay) = — 8B Dopd™(DM8,A,)  (26)

We have verified the consistency of the above when
taking 0°.
It is convenient to define

X = D“”@MA,, (27)
and to introduce the notation

Dakﬁo‘ = Dk:[DOkﬁo—leﬁl] (28)
Do = Dzoaz (29)

In this way we have
X =—(D;A;+ DoAp), (30)

together with
DyOy=— 0,D;. (31)
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Covariant formulation

The modified dispersion relations are found very
easily by manipulating Eq.(26). In momentum space

A (z) = / diz A, (k)e=kue” (32)

and choosing the Lorentz gauge, these equations
reduce to

k2A,+2p,(p"A)=0 , p*=2VBD*ks; (33)
kYA, =0 . (34)

The vector p®is proportional to the momentum
space version of the vector D, introducced in Egs.
(28) and (29).

Multiplying the first relation in (33) by p*, it follows
that:

(k*+2p*)(p”Ay) =0. (35)

Moreover p”A, is gauge invariant. In fact, in coordi-
nate space is proportional to DP Jap - So this com-
ponent is physical and has dispersion relation given

by:

k?+2p?=0. (36)
If (k% + 2p?) is not zero in Eq.(35), it follows that
p”A, =0 . In four dimensions, this condition plus the
Lorentz gauge leaves two degrees of freedom. But

the Lorentz gauge permits a further gauge transfor-
mation with parameter \ such that:

82\ =0, (37)
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which leaves only one degree of freedom as it should
be. Moreover from the first equation in (33), this
remaining degree of freedom satisfies

k2A, =0, (38)
so its dispersion relation is
k2 =0. (39)
The general solution of (35) is:
p’A, =— A1 (k)6 (k*+2p?). (40)
Putting it back into (33), we get

Ak
A= a,(0)502) + 2205002 1 22, (k) =

0, au(k)p =0 (41)
From (41), we get the electromagnetic tensor

fov = (k) — kan(k)s(k2) + 2208 502 4

2p°) (kupy — kup) (42)

It represents a plane wave with dispersion relation
k* = 0 (The magnetic and electric fields are the
normal ones, perpendicular to k), plus a plane wave
propagating in the direction k with dispersion rela-
tion k?+2p*=0.

The fields for the second wave are

Ak

(kK
2¢ j11(krpr) 116(2)

B, =

(43)
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Notice that E is perpendicular to B, B is perpendic-
ular to k, but E is not necessarily orthogonal to k.
Moreover, this wave exists only if k2 0.

Modified Maxwell equations

10D 4x
V.-D = dmp, VXH—a]—CBat_CJ, (44)
1
In components
Dz' = ((5@] — SBeiej)Ej—l—SBeibij, (46)

Summary of the dispersion rela-
tions and electromagnetic fields

We assume the space-time dependence of any field to

be proportional to ei(k'X_Wt), where kis the
momentum of the wave and we work with Coulomb
gauge potential A. The notation is

b={bn}, e={em}. (48)

The expressions of Egs. (28) , (29) in momentum
space are

(D} = D=—i[we—kxb] (49)
DO = —e-k (50)

There are two main cases:
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(i) D;A; = 0: In this case the dispersion relation is
w = |k|. The fields are
B=+{(e-klk—e+bxk} |, (51)
E=~{(b-k)k—b—exk} . (52)

(ii) DjA; # 0 : In this case the dispersion relation
and the fields are

w =

l\/25632(f<- (b x €))% — 4(1 — 8Be?){8B][(k-e)2— (k x b)?] — 1} — 16Bk- (b x e)

|k

2(1 — 8Be?)
(53)
B=~{kx (kxb)—wkxe} | (54)
E=~{wkxb-w?e+k(e-k)} . (55)

In both cases 7 is an arbitrary constant. For small
B, the dispersion relation (53) reduces to

A

w = |k|[1 + B(Sf( (e x b) + 4(k x b)? + 4(k
e)2)]. (56)

The anisotropic velocity of light arising from the
above dispersion relation is

X

A

Viw = c(k) 212(1 +8B (b2 + ¢2) — 4B((k x b)2 +

(Rxe)2))
+ 8B(e x b) — SB<b : f<>b - SB(e :
R)e. (57)
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THE MODEL AS A SECTOR
OF THE SME

In order to impose some bounds upon the parame-
ters of the model it is convenient to recast the
quadratic sector of the action (14) in the language of
the Standard Model Extension and to make use of
the numerous experimental constraints derived from
it. To begin with, let us recall the dimension of the
fields and parameters involved in the model

1

A=m, [=p=m: [Bl=—7 [Be}=
0 (58)
Next we make the identification
]- K 1%
= B(fuD")* = = Z(kr)™" frrfuv (59)

where the tensor (kF)HA'IL Y, with 19 independent
components, has all the symmetries of the Riemann
tensor and a vanishing double trace. In terms of the
matrix elements D, characterizing the vacuum
expectation values of the electromagnetic tensor we

obtain

1

5 BD* (™ — ), (60)
where

D?*=D,zD*" =2(b?* — e?). (61)
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Next we have to identify the appropriate combina-

tions of the components of (kF)F”A“ “ which are

bounded.

The finally required combinations, being dimension-
less numbers, are

e 1 -
(/ﬁ?e+)]k = §(K3DE + KDHB)]k = 68 [b_]bk — €€ —
%(b2—e2)5jk] <1077, (62)
L\ jk 1 ik 1
(Re—)"" = §(K/DE_K/HB) —§5jkt"“(/€DE)
1
= — 68 [(bjbk + ejek) — §5jk;(b2 + 82)] <
10-16 (63)
_ : 1 ;
(Rot)?* = 5(kpB + kip)’" = 6B(ejb, — exbj) <
10-12, (64)
_ : 1 ;
(Ro-)"* = S(rpB — kup)" = GB[(ejbk + exbj) —
2(e-b din| <1072, 65
3 J
Rir = %t T(kDE)j = — 23(62 + b2) <
10-15. (66)

All matrices from (62) to (65) are traceless, with
(Ro4)’" being antisymmetric (3 independent compo-
nents) while the three remaining ones are symmetric
(5 independent components each). The above combi-
nations (62) to (66) constitute a convenient alterna-
tive way to display the 19 independent components
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of the tensor (]{JF)QB #” The bounds are obtained in
terms of such combinations referred to the Standard
Inertial Reference Frame centered in the Sun.

Notice that the bilinears which are odd under the
duality transformations

e—b, b—o —e. (67)

are much more constrained than those which are
even. In this way, even though our model is not
duality invariant, this transformation seems to
explain the above mentioned hierarchy in the LIV
parameters exhibited in Eqgs. (62)-(66).

In order to obtain more specific qualitative conse-
quences of the bounds (62) to (66) it is convenient to
express them in the coordinate system defined by
(17). Also we introduce the notation

x = V6Be X 10'°, y =+6Bb x 10'°, r = |x|,
y=1y] (68)

We consider only absolute values of the related
quantities and we focus upon those constraints
arising from Eqs. (62) and (65) . The non-trivial
contributions are

(Fer)''| = |(2®—9?)| <3 (69)
(Fet)®| = |(1—3sin?¢)a?—y?|<3 (70)
(Fer)| = [202+ (1 —3cos?y)x?| <3 (71)
(Rer)®| = |2%sin2¢] <2 (72)
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together with

(fo)'! = (Fo)®=lzycosv| < (73)
(Fo_)™ = ]a:ycosw|<% (74)
(Fo_)? = |zysiny| <1 (75)

The allowed region in the (x — y) plane is shown in
Fig. 1 where we plot the boundaries of the corre-
sponding inequalities. In expressions (72), (73)-(75)
we consider the lower bound corresponding to the

maximum value of the trigonometric function on the
LHS of the inequality. This leads to

3 3
T <2, zy| <7 <1<3 (76)
The boundary = y = 3/4 is in dashed line. From (71)
the most stringent bound arises from ¢ = 7/2 and
corresponds to
3 _ 2
y < 233 (77)

The boundary is in dot-dot-dashed line. From (70)
the most stringent bound arises again from ¢ = 7/
2 and corresponds to

Yy <V3—2z?, (78)

with boundary in dot-dahed line. The expression
(69) does mnot provide additional bounds and is
plotted for completeness. The corresponding bound-

aries are y+ = vV2®+ 3, shown in dotted lines in Fig.

19



1. An upper bound including all previous ones is
given by the interior of the circle

y=4/=—x°, (79)
shown in solid line, and which yields the bound

B(e®4+b%) =~ (e +b%) <25x 1079, (80)
Mp

This bound includes those of Eq. (62) to Eq. (66).

All the above relations are valid in the Standard
Inertial Reference Frame centered in the Sun.

T My o

Figure 1. Boundaries of the allowed region obtained from

the constraints in the parameters /%gﬁj_ and /%gli The allowed
region is on the inside the dashed, dot-dashed and dot-dot-
dashed lines. An excellent approximation for it is the circle

shown in solid line.
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SUMMARY

We have studied a novel way of implementing
a model with spontaneously broken Lorentz
symmetry by introducing a constant vacuum
expectation value (VEV) of the field strength
(Fuy) = Cpy, so our model preserves gauge
invariance from the very beginning.

There is only one case, given in the subsub-
section E-2, which results in the breaking of
the Lorentz group to the three generators
subgroup H O M(2). All the other cases break
to a subgroup isomorphic to T'(2), with two
generators.

Anisotropy in the speed of light:
The two-way light speed is defined by:

erw (k) = %(0(1}) te(—K) =1+8B(+

b2)—4B((b-12)2+(e-12)2> (81)

An appropriate definition in this model of
the anisotropy of the speed of light is

B¢ o (k) = eqw (k x (R X ﬁ)) , (82)

88 = lama = (fen) (2 (B k) (e

C 12)2) ‘ (83)
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From the last expression we obtain the bound

A€ _ 4B sin 20(b? + &2) < 4B(b? + e?) <
C
1032, (84)

according to (80), where 6#is the angle
between the vector fiand k. The above
anisotropy measures the difference in the two-
speed of light propagating in perpendicular

directions in a given reference frame.

Assuming our background fields e and
b might represent some galactic or inter-
galactic fields in the actual era, we obtain a
very reasonable bound for the magnetic inter-
galactic field by assuming that the constant
appearing in the action (14) corresponds to
an energy density p

p=1[(1-D?BID?~ (b —e?),  (85)

1
2
which we can associate to the cosmological
constant, since it would represent a global
property of the universe. The fact that this
constant is positive favors (b2 — e2) > 0, so
that one can perform a passive Lorentz trans-
formation to a reference frame where e = 0.
Suppossing further that this frame, which
describes the intergalactic fields, is concordant
with the Standard Inertial Reference Frame,
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in such a way that the bounds change by
small amounts and taking the upper limit

lpal < 10748 (Ge V), (86)

we obtain the bound
b|] < 5x107°Gauss, (87)

which is consistent with observations of inter-
galactic magnetic fields.

THANK YOU!
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