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Irreducible representations of Poincaré Group

Eversince the work of Wigner it is clear that unitary irreducible
representations of Poincaré group are labeled by a continous
parameter m a semi-integeer number s
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Fields and Induced representations

Let RB
A be an irreducible representation of the Lorentz group.

Then we obtain (reductible) representations of Poincaré group:

RB
A (Λ)FB(Λx + a) = FA(x)

The set of fields that transform acording to a representation of the
Lorentz group are too big. We need to set some restrictions in
order to obtain an irreducible representation. If we are lucky we
can use Casimirs of the group to select irreducible representations.
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Casimirs

In D dimensions there are several casimirs that can be constructed
form the dual of the Pauli-Lubasky four vector.

Wµνρ = J[µνPρ] =
1

3
(JµνPρ + JνρPµ + JρµPν)

Wµν = WµνρPρ

This tensor commutes with Pµ so we can build Casimir invariants

W2 = WµνW νµ W4 = Wµ1µ2W µ2µ3Wµ3µ4W µ4µ1

W6 = Wµ1µ2 · · ·W µ12µ1 W8 = Wµ1µ2 · · ·W µ16µ1
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Projectors

Suppose we have a Casimir operator K with a single different
eigenvalue:

P =
∏
i 6=k

K − λi I

λk − λi

To be able to use this idea we need

The representation we want is contained only one time

The igenvalue λk is different from the rest
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Examples

If D = 4 inside a field Bµ dwell a s = 0 representation and a s = 1
representation. The Projectors are

Ps=0 =
−∂µ∂

ν

P2
, Ps=1 =

∂µ∂
ν + P2

P2

We can use them to build covariant field equations with gauge
invariance (yes, masive gauge invariance)

(P2 + m2)Ps=1Bµ = Bµ

Bµ → Bµ + Ps=0Λµ

Gauge invariance may be used to set ∂µBµ = 0 and the remaining
equation is, of course Proca equation.
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The casimir in this case is Pauli-Lubansky four vector W2 = W 2,
whose eigenvalues are m2j(j + 1). Remember that

Jµν = Lµ + Sµν , Lµν = XµPµ − NνPµ

(Sµν)αβ = i
(
δµ

αδ
ν
β − δ

µ
βδ

ν
α

)
We may use this projectors to build non-local actions for every spin.

S =

∫
dDxΨA(x)(P2 + m2)PΨ

This is formal but we can make sense of some of this action
introducing auxiliary fields.
I have not been able to make contact with Sinh-Hagen descriptions.
Non-local action for higher spin particles have been used by
Francia and Sagnotti
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Clifford algebras, sucint introduction

Representations of Clifford algebras are Γµ, µ = 0, ..,D − 1

{Γµ, Γν} = −2ηµν

For D even we can find unitary matrices anti-diagonal matrices

Γµ =

(
0 Σµ

Σ̄µ 0

)
where Σ0 = Σ̄0 = I and Σ̄i = −Σi . In odd dimensions we add

W = id+1Γ0Γ1 · · · ΓD−1 ΓD = ±iW
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Periodic properties

We construct these matrices by induction. Let Γ̃µ the gamma
matrices in dimension D − 2, then

Σi = Γ̃iW̃ i = 1, 2, ...,D − 3

ΣD−2 = iW̃ Γ̃0, ΣD−1 = W̃

matrices B, C , B̃, C̃ that make the transition:

BΓµB−1 = −(Γµ)∗ B̃ΓµB̃−1 = (Γµ)∗

C ΓµC−1 = (Γµ)T C̃ ΓµC̃−1 = −(Γµ)T

There is only one independent matrix

B = B̃W , C = C̃ W , C̃ = B̃Γ0
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D BB∗ B̃B̃∗ M PM SimM PSimM Sim AntiSim

2, 10 I I Yes Yes No No B, B̃, C̃ C

3, 11 I – Yes – No – B C

4 I −I Yes No No Yes B B̃, C , C̃

5 – −I – No – Yes B̃, C̃

6 −I −I No No Yes Yes C B̃, B, C̃

7 −I – No – Yes – B̃, C̃

8 −I I No Yes Yes No B̃, C , C̃ B

9 – I – Yes – No B̃, C̃
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Supermultiplets

Irreducible representations of supersymmetry algebras are callled
supermultiplets. We want to know what particles there are inside a
given supermultiplet

Susy/Spin [0] [1] [2] [3] [4]

N = 1 2 1 0 0 0

N = 2 4 5 1 0 0

N = 3 14 14 6 1 0

N = 4 42 48 27 8 1

Table: Masive supermultiplets in D = 4
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Massive supermultiplets in D = 10

Irrep Bosonic fields Fermionic Fields
1 44+84 128
9 9+36+126+156+231+594 16+128+432+576

16 9 + 36 + 44 + 84 + 126 + 231 + 594 + 924 16 + 2× 128 + 432 + 576 + 768
36 9 + 36 + 44 + 84 + 126 + 231 + 594 + 910 + 924 + 1650 16 + 2× 128 + 432 + 576 + 768 + 2560
44 1 + 36 + 44 + 84 + 231 + 45 + 495 + 924 + 2457 16 + 128 + 432 + 576 + 1920 + 2560
84 1 + 36 + 44 + 2 × 84 + 126 + 231 + 495 + 594 + 2 × 924 +

1980 + 2457 + 2772
16 + 2× 128 + 2× 432 + 576 + 672 + 768 + 2560 + 5040

128 1 + 9 + 2 × 36 + 44 + 2 × 84 + 2 × 126 + 156 + 2 × 231 +
495 + 2× 594 + 910 + 2× 924 + 1650 + 2457 + 2772 + 3900

2× 16 + 3× 128 + 3× 432 + 2× 576 + 672 + 768 + 1920 +
2× 2560 + 5040
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Superprojectors

General theorem

The super spin content inside a superfield is the same as the spin
content inside a supermultiplet.
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Superparticles

Here we use superprojectors to covariantly quantize superparticles
(actually systems with second class constraints)
We start from an action for a massive superparticle in ten
dimensions

S =
1

2

∫
(e−1ωµωνηµν −m2e)dτ

with ωµ = ẋµ + iθaSµ
abθ̇

b. In this system we have a first class
constraint and a family of second class constraints.

da = πa + ipµSµ
abθ

b

{da, db} = −2ipµSµ
ab
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Second-class constraints

Poisson brackets with Dirac brackets.

Non-commutative classical algebra

{
θa, θb

}
D

=
i

2p2
pµSµ ab

{θa, xµ}D =
1

2p2
θbSµ

bcSν capν

{xµ, xν}D =
−Σµν

p2

Jµν = Lµν + Σµν

Lµν = xµpν − xνpµ Σµν =
−1

4
θSµνπ

πa = −ipµSµ
abθ

b
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Quantization

Straightforward canonical quantization now demands to switch
Dirac brackets by commutators. So that our problem is now to
find a set of operators that fulfil the quantum algebra

Non-commutative quantum algebra

{
Θ̂a, Θ̂b

}
=
−1

2P2
PµSµ ab

[
X̂ µ, Θ̂a

]
=

iΘ̂b

2P2
PνSµ

bcSν ca[
X̂ µ, X̂ ν

]
=
−iΣµν

P2

where Σµν is the internal angular momentum given in this case by

Σµν =
−1

4
Θ̂SµνΠ̂
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Using a superprojector

Now superprojectors come handy

Theorem

This algebra can be implemented at the quantum level if we find a
superprojection operator P that meet the requirements

[P,Qa] = [P,Pµ] = [P, Jµν ] = 0

PDaP = 0

Then a set of operators (X̂ µ, Θ̂a) that satisfy the quantum algebra
of superspace would be given by the rule

X̂ µ = PX µP Θ̂a = PΘaP
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Choosing a superprojector

We now have three such projectors and hence we have three
representations of the algebra. The problem is that for these
representations the internal angular momentum has a complex
expression

Σµν =
−1

4
Θ̂SµνΠ̂ + Tµν

Tµν =
−1

4
PΘSµνΠP +

1

4
Θ̂SµνΠ̂ =

Pα

32P2
PDSαSµνDP

This extra term can also be written in terms of the operator
defined earlier Cµν as Tµν = PαP[αCµν]. In four dimensions there
are projectors (for a scalar superfield) such that Tµν = 0, but this
is no longer true in D = 10. For the three projectors we have
found the term Cµν is strictly non-zero. If we want to realize the
algebra we need to consider a different superfield. Now table
comes handy. To get the correct algebra we need the smallest
supermultiplet. The simplest superfield which contains such a
representation is a symmetric, traceless and divergenceless tensor
Bµν(xµ, θa) that transforms in the 54 irrep of SO(9, 1). The 54
irrep decomposes as the 44+9+1 irreps of SO(9) so that the irreps
of super Poincaré inside this superfield are given by the
(44⊕ 9⊕ 1)⊗ (44⊕ 84⊕ 128). The 1 representations occurs only
once (in the decomposition of 44⊗ 44). For this superfields the
generators of super Poincaré take the same form that for a scalar
superfield except the generators of Lorentz transformations:

Jµν = Lµν + Σµν + Rµν

The new term Rµν is responsible for the transformation of the
indices of the superfield. As before we can construct the tensor

Cµν = Pρ

(
J[µνPρ] +

1

24i
QSµνρQ

)
= Pα

(
R[µνPα] −

1

24i
DSµναD

)
And the corresponding Casimir C2. We know that inside a Bµν

superfield there is a 1 irrep of super Poincaré (and only one), so we
are allowed to set the restriction

C2Bµν = 0

We can also construct a projector to this representation. First we
need to calculate all the irreps inside Bµν as we have indicated.
Then we compute the eigenvalues of C2, λi . Different irreps inside
Bµν may have the same λi , but that does not disturb us. The
projector is then

P =

∏
i (C2 − λi )∏

i (−λi )

Every projector P satisfies PDaP = 0 and that is all we need to
understand that we have a correct covariant quantization of the
massive super particle in D = 10. Indeed, for the same reason as
before, not only C2 is zero but also Cµν . To avoid confusion let us
rename the indices of the superfield Bµν by BM so that the Lorentz
generators may be written as (Rµν) N

M . The equations for a
superfield describing first quantized superparticles are then

−1

24i
DSµνρDPρBM(x , θ) = Pρ(P[ρRµν])

N
M BN(x , θ)

(P2 + m2)BM(x , θ) = 0

A rapid look at these equations reveals its non-trivial character. In
four dimensions a massive spin 1 particle is described by Proca
equations

(P2 + m2)Aµ = 0 ∂µAµ = 0

If m 6= 0 they are equivalent to ∂µFµν = m2Aν and the limit
m = 0 of this equation gives Maxwell equations. Something similar
happens with supersymmetry. Super Proca equations are

D2V = D̄2V = 0 (P2 + m2)V = 0

For massive particles this equations are equivalent to[
1

16

(
εabDaD̄2Db + εȧḃD̄ȧD2D̄ḃ

)
+ m2

]
V = 0

In the limit m = 0 this reproduces the equations of super Maxwell.
In view of this it is tempting to think that there exists a limit of
(18-18) which reproduces super Maxwell.
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Non-local Lagrangian formulation
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