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Irreps of Poincaré

Irreducible representations of Poincaré Group

Eversince the work of Wigner it is clear that unitary irreducible
representations of Poincaré group are labeled by a continous
parameter m a semi-integeer number s




Irreps of Poincaré

Fields and Induced representations

Let RE be an irreducible representation of the Lorentz group.
Then we obtain (reductible) representations of Poincaré group:

RE(A)Fa(Ax + a) = Fa(x)

The set of fields that transform acording to a representation of the
Lorentz group are too big. We need to set some restrictions in
order to obtain an irreducible representation. If we are lucky we
can use Casimirs of the group to select irreducible representations.



Irreps of Poincaré

Casimirs

In D dimensions there are several casimirs that can be constructed
form the dual of the Pauli-Lubasky four vector.

1
Wiwp = Iy Pp) = 3 (v Pp + JvpPu + JpuPy)
Wy = Wy, P?
This tensor commutes with P, so we can build Casimir invariants

Wsr = W#V WY+ Wy = W,ul,uz W H213 WM3H4 W/ M4k
W =W - WH2k1 W =W, Vs



Irreps of Poincaré

Projectors

Suppose we have a Casimir operator K with a single different
eigenvalue:

K — X\l
=I5

To be able to use this idea we need
@ The representation we want is contained only one time

@ The igenvalue Ay is different from the rest



Irreps of Poincaré

Examples

If D = 4 inside a field B, dwell a s = 0 representation and a s =1
representation. The Projectors are

—0,0” 9,0" + P2
Poo=—tp—r Poq=—tp—

We can use them to build covariant field equations with gauge
invariance (yes, masive gauge invariance)

(P? + m*)Ps-1B, = B,
B, — B, +P.oA,

Gauge invariance may be used to set 9"B,, = 0 and the remaining
equation is, of course Proca equation.



Irreps of Poincaré

The casimir in this case is Pauli-Lubansky four vector W, = W?,
whose eigenvalues are m?j(j + 1). Remember that

Juw =Ly + S, Ly =X,P,—N,P,
(§")ap =i (5Ma(5”ﬂ - 5“651’&)
We may use this projectors to build non-local actions for every spin.

S= / dPxWA(x)(P? + m?)PV

This is formal but we can make sense of some of this action
introducing auxiliary fields.

| have not been able to make contact with Sinh-Hagen descriptions.
Non-local action for higher spin particles have been used by
Francia and Sagnotti



Supersymmetry

Clifford algebras, sucint introduction

Representations of Clifford algebras are ', p=0,..,D —1

{r/u M} = —2Nu

For D even we can find unitary matrices anti-diagonal matrices

0o X+
w2
(e )

where Y0 =50=1/and £’ = —Y'. In odd dimensions we add

W= i9trory - Tpy P =4iw



Supersymmetry
Periodic properties

We construct these matrices by induction. Let [~ the gamma
matrices in dimension D — 2, then

Yy =T'W i=1,2..,D-3
yP2 —jwi°, P l-ow

matrices B, C, B C that make the transition:

BrHB=!=—(ry*  BrHB-' = (")
crec =T et = ()7

There is only one independent matrix

B=BW,C=Cw,C=B8Br



Supersymmetry

D | BB*|BB*| M | PM | SimM | PSimM | Sim | AntiSim
2, 10 / / Yes | Yes No No B,B,C C
3, 11 / - Yes | - No - B C
4 / —I | Yes | No No Yes B B, C, C
5 - —1 - No - Yes B, C
6 —1 | =1 | No | No | Yes Yes C B, B, C
7 —1 — No | - Yes - B, C
8 —1 I | No | Yes | Yes No |B C C B
9 - / — | Yes - No B, C




Supersymmetry

Supermultiplets

Irreducible representations of supersymmetry algebras are callled
supermultiplets. We want to know what particles there are inside a
given supermultiplet

Susy/Spin | [0] | (1] [ 2] | B
N=1 2 1 0 0
N=2 4 5 1 0
N=3 14 |14 | ©6 1
N=4 42 | 48 | 27 | 8

~lololol=

Table: Masive supermultiplets in D = 4



Supersymmetry

Massive supermultiplets in D = 10

Irrep Bosonic fields Fermionic Fields

1 44+4-84 128

9 9+436+126+156+-231+594 16+1284-432+576

16 9+ 36 + 44 + 84 + 126 4 231 + 594 + 924 16 + 2 x 128 4 432 4 576 4 768

36 9 + 36 + 44 + 84 + 126 + 231 + 594 + 910 + 924 + 1650 16 +2 x 128 4 432 4 576 4 768 + 2560
44 1+ 36 + 44 + 84 + 231 + 45 + 495 + 924 + 2457 16 + 128 + 432 4 576 + 1920 + 2560

84 1+36+44+2 x 844 126 + 231 + 495 + 594 + 2 X 924 + 16 + 2 X 128 + 2 X 432 4 576 + 672 + 768 + 2560 +- !
1980 + 2457 4 2772
128 1+9+2X36+44+2x84+2x 126+ 156 + 2 x 231 + 2 X 16+3 x 128 +3 x 43242 X 576 + 672 + 768 +
495 + 2 x 594 4 910 + 2 X 924 4 1650 + 2457 4 2772 + 3900 2 x 2560 + 5040




Superprojectors

Superprojectors

General theorem

The super spin content inside a superfield is the same as the spin
content inside a supermultiplet.




Covariant cuantization

Superparticles

Here we use superprojectors to covariantly quantize superparticles
(actually systems with second class constraints)
We start from an action for a massive superparticle in ten
dimensions

1

S= > /(elw“w”n,w — m?e)dr

with w# = x* + iGQS“abéb. In this system we have a first class
constraint and a family of second class constraints.

dy = 7, + ip,S*,,0°
{da, db} == _2ipli5uab



Covariant cuantization

Second-class constraints

Poisson brackets with Dirac brackets.

Non-commutative classical algebra

bl _ b
{68’9 }D N 2p2pu5ua
1
{937XM}D = 72[32 HbSMbCSV Capy

_y
p2

{Xuvxy}D =

JH — [y Y
" = xFp” — x"p YHY = _7105””77

Ta = —ip,S* 0"



Covariant cuantization

Quantization

Straightforward canonical quantization now demands to switch
Dirac brackets by commutators. So that our problem is now to
find a set of operators that fulfil the quantum algebra

Non-commutative quantum algebra

{6267} = ﬁp swab

b
5,87 = ’222P sk, sve
— Y

p2

5] -

where 2" is the internal angular momentum given in this case by



Covariant cuantization

Using a superprojector

Now superprojectors come handy

Theorem

This algebra can be implemented at the quantum level if we find a
superprojection operator P that meet the requirements

[P, Qo] = [P, Pu] = [P, Ju] = O
PD,P =0

Then a set of operators ()A(”7 (:)") that satisfy the quantum algebra
of superspace would be given by the rule

Xt =PXrP 62 = PO P




Covariant cuantization

Choosing a superprojector

We now have three such projectors and hence we have three
representations of the algebra. The problem is that for these
representations the internal angular momentum has a complex
expression

1. .
2= T@SWI'I + T

-1 lac o Pa
T/“, = TP@SMVI—IP + Zesuyn — 32P2]P)DSQS'MVDIP)

This extra term can also be written in terms of the operator
defined earlier C,;, as T, = PP CW]. In four dimensions there
are projectors (for a scalar superfield) such that T,, = 0, but this
is no longer true in D = 10. For the three projectors we have
found the term C,, is strictly non-zero. If we want to realize the
algebra we need to consider a different superfield. Now table
comes handy. To get the correct algebra we need the smallest
supermultiplet. The simplest superfield which contains such a

rarmvracantFAaFiAam e A cvurartaatric Framcralace AanA AnvsAarceancalAce FAMeAr



Non-local Lagrangian

Non-local Lagrangian formulation
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