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Motivation

BE condensation is a very old phenomenon observed in 1995.
From the theoretical point of view the main assumption is

S = 0

Why?. large distances can be neglected.
If we have two atoms with total spin s1 and s2 then the interaction
potential at very large disntance is

V = α

(
s1.s2 − 3(s1 .̂r)(s2 .̂r)

r3

)
, (1)

However the dipolar interactions cannot be neglected even in the
dilute approximation.
Presently the experiments are complicated and the spin effects are
no taken into account ....except recently (2006-..) (Stuttgart group).
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Experimental sketch

A sketch of the experiment is

However one must
87Rb and 23Na were the original gas in the oven (1995) (S=1)
52Cr, S=3
In the original experiments spin was used in order to decelerate the
atoms (Zeeman slower + an opposite laser beam)!!
Atoms are captured in the magnetic-optical trap.
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Questions

If spin effects are explicitly taken into account there are differences
but ...
What happens with the “conventional vortex solution"?.
The spin introduce a “spinor" order parameter in the
Gross-Pitaevskii equation, are there new physical the effects?.
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An alternative route; NCQM

NCQM means several things, e.g., if we have Ĥ + commutators,
First possibility

[xi , pj ] = iδij ,

[xi , xj ] = iθij , [pi , pj ] = iBij

where θij = −θji , Bij = −Bji are constants matrices (Nair and
Polychronakos PLB’2001).
Second possibility

[xi , pj ] = iδij ,

[xi , xj ] = iθ2εijksk , (2)
[pi , pj ] = 0

and sk is the spin operator and θ a parameter with dimensions of
lenght.
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NC can be realized by using Bopp’s shift (commutative variables)

xi → xi +
θij
2 pj

and NCQM becomes

H(x +
θ

2p, p)ψ = i ∂ψ
∂t ,

(non-locality, ....)
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In the spin case one has the algebra (Snyder NR)

[x̂i , x̂j ] = iθ2εijk ŝk ,

[x̂i , p̂j ] = iδij , [p̂i , p̂j ] = 0, (3)
[x̂i , ŝj ] = iθεijk ŝk , [ŝi , ŝj ] = iεijk ŝk ,

The analog of the Bopp’s shift now is

x̂i → x̂i = xi + θsi ,

p̂i → p̂i = pi := −ı∂i , (4)

ŝi → ŝi = si :=
σi
2 ,

where xi and pi are now canonical operators satisfying the
Heisenberg’s algebra.
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This simple observation implies that any noncommutative quantum
mechanical system described by

ı∂t |ψ(t)〉 = Ĥ(p̂, x̂ , ŝ) |ψ(t)〉 =

[
1
2 p̂2 + V̂ (x̂)

]
|ψ(t)〉 (5)

can equivalently be described by the commutative Schrödinger equation

ı∂tψ(x, t) = H(pi , xi + θsi )ψ(x, t) , (6)

where ψ(x, t) is a Pauli spinor.
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An example: NC Harmonic oscillator

Hamiltonian

Ĥ = −1
2∇

2 +
1
2 x̂

2,

= −1
2∇

2 +
1
2 (x + θs)2

.

= −1
2∇

2 +
1
2x

2 + θ s.x +
θ2

2 s2. (7)

dipolar interaction explicit!.
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Ĥ is solved by using SSQM methods
Ground state has no nodes

H̃ = H − E0 = Q†i Q, (8)

where

Qi =
1√
2

(∂i + x̂i ) , Q†i =
1√
2

(−∂i + x̂i ) , (9)

Following Zanelli and J.G (PLB 1985) one find

Qi → S = Qiψi = Qiσi ⊗ σ− = Q ⊗ σ−, (10)
Q†i → S† = Q†i ψ

†
i = Q†i σi ⊗ σ+ = Q† ⊗ σ+, (11)
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The supersymmetric Hamiltonian is

Hs :=
1
2{S

†,S} =
1
2 Q†Q ⊗ 1 + σ3

2 +
1
2 QQ† ⊗ 1− σ3

2 , (12)

and this prescription obviously fulfills

[S,Hs ] = 0 =
[
S†,Hs

]
, (13)

{S,S} = 0 = {S†,S†} .

Notice that this Hamiltonian is defined on a space of four component
functions (a pair of spinors),

ψ =

(
Ψ(1)

Ψ(2)

)
.
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A straightforward calculation yields

Hs =
1
2

(
−1
2∇

2 +
1
2x

2 + 3 θ x · s +
9
8θ

2
)
⊗ 12×2 −

1
2

(
2 s · L +

3
2

)
⊗ σ3,

= Hss + HNC , (14)

where

Hss =
1
2

(
−1
2∇

2 +
1
2x

2
)
⊗ 12×2 −

1
2

(
2 s · L +

3
2

)
⊗ σ3, (15)

is the standard supersymmetric Hamiltonian in three-dimensions for the
harmonic oscillator, whereas

HNC =
1
2

(
3 θ x · s +

9
8θ

2
)
⊗ 12×2, (16)

is the correction due to non-commutativity.
Actually, the term x.s is the dipole interaction mentioned above and 9

8θ
2

is just a correction to the ground state energy.
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The ground state satisfy

Sψ0 = 0 or S†ψ0 = 0 .

which implies that ψ0 =

(
Ψ

(1)
0
0

)
, with

Q Ψ
(1)
0 = Qiσi Ψ

(1)
0 = 0 . (17)

The general normalized solution is

Ψ
(1)
0 = π−

3
4 e 3θ

2 ı kI ·x e−
1
2 (x− 3θ

2 kR)2
χ−(k̂), (18)

with k̂ = kR + ikI is a complex unitary vector
(k̂2 = 1 ⇒ kR

2 − kI
2 = 1 , kR · kI = 0) and χ−(k̂) is a constant spinor

satisfying (
k̂ · σ

)
χ−(k̂) = −χ−(k̂),

with χ−(k̂)†χ−(k̂) = 1
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First main conclusions

The ground state is infinitely degenerated
The rotational symmetry is spontaneously broken

< x >k=
3θ
2 kR

< p >k=
3θ
2 kI
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Bose-Einstein Condensation and NC Hartree
Approach

One starting point:

H =
N∑

i=1

(
−1
2∇

2 + u(r)
)

+
∑
i>j

W (ri − rj).

where
W (ri − rj) = γ δ(ri − rj)

and
Ψ→ Order Parameter

All the bosons are in the ground state (in BE phase Ψ(r1, r2, ..., rN))

Ψ(r1, r2, ..., rN) =
N∏

i=1
ψ(ri ),

W becomes (x̂ → x + θs)

W (r − r
′
) = γ δ(r − r

′
+ θ(s− s

′
)),

= γ δ(r − r
′
) + θγ∆s. ∂

∂rδ(r − r
′
) +O(θ2).
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Normalization condition ∫
d3|ψ(r)|2 = N.

Tiny depletion ∫
d3r∇n = 0,

with n = |φ|2.
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Energy and Generalized Gross-Pitaevski Equations

Computing

δE = δ

(
< Ψ|¬Ĥ|Ψ >

< Ψ|Ψ >

)
= 0,

+ Lagrange multipliers

E = N (EGP + EC ) +O(θ2),

where EGP is the conventional Gross-Pitaevski term and

EC = θ ω2
∫

d3r r . ψ∗(r)sψ(r)− γθ
∫

d3r∇n . (ψ∗(r) sψ(r)) ,

≈ θ ω2
∫

d3r ψ∗(r)r . sψ(r) + d .c +O(θ2).
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Spin and Vortices

The Generalized Gross-Pitaevski Equations are straightforward for s = 1
and axial symmetry

ψ(r) =

 φ1(ρ, z)e iq1 ϕ

φ0(ρ, z)e iq0 ϕ

φ−1(ρ, z)e iq−1 ϕ

 . (19)

where q0 and q± are winding numbers imply[
−1
2

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

∂2

∂z2

)
+

q2
0

2ρ2 +
1
2ω

2 (ρ2 + z2)+ gφ2
]
φ0 = µφ0,[

−1
2

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

∂2

∂z2

)
+

q2
±

2ρ2 +
1
2ω

2 (ρ2 + (z ± θ)2)+ gφ2
]
φ± = µφ±.

and µ chemical potential.
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Partial “Semi" conclusions

NC can simulate physical effects (Landau)
Nontrivial examples of QM (spontaneous rotational symmetry
...probably nontrivial fermionic systems)
if φ2 ≈ φ2

0 in first equation and son on→ three independents vortices
However stil we need numerical simulations and explain basic
physics; vortex-vortex interaction 6= 0?, ....
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