Bose-Einstein theory based in NCQM

J. Gamboa
Departamento de Física Universidad de Santiago de Chile

São Paulo
September 8-12, 2009

- Magnetic-Dipole Spin Effects in Noncommutative Quantum Mechanics, (H. Falomir, J. Lopez, F. Mendez, P. Pisani and J.G), Phys. Lett. B in press.
- Towards to a Bose-Einstein theory for any integer spin (H. Falomir, F. Mendez and J.G), in progress.

plan

- Motivation
- Experimental sketch
- Basics NCQM

Questions

- NCMQ and dipolar magnetics interactions
- First main conclusions
- Bose-Einstein and NC Hartree approach
- Spin and vortices
- Conclusions
- BE condensation is a very old phenomenon observed in 1995.
- From the theoretical point of view the main assumption is

$$
S=0
$$

Why?. large distances can be neglected.

- If we have two atoms with total spin \mathbf{s}_{1} and \mathbf{s}_{2} then the interaction potential at very large disntance is

$$
\begin{equation*}
V=\alpha\left(\frac{\mathbf{s}_{1} \cdot \mathbf{s}_{2}-3\left(\mathbf{s}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{s}_{2} \cdot \hat{\mathbf{r}}\right)}{r^{3}}\right), \tag{1}
\end{equation*}
$$

- However the dipolar interactions cannot be neglected even in the dilute approximation.
- Presently the experiments are complicated and the spin effects are no taken into accountexcept recently (2006-..) (Stuttgart group).

Experimental sketch

A sketch of the experiment is

However one must

- ${ }^{87} \mathrm{Rb}$ and ${ }^{23} \mathrm{Na}$ were the original gas in the oven (1995) $(\mathrm{S}=1)$
- ${ }^{52} \mathrm{Cr}, \mathrm{S}=3$
- In the original experiments spin was used in order to decelerate the atoms (Zeeman slower + an opposite laser beam)!!
- Atoms are captured in the magnetic-optical trap.

Questions

- If spin effects are explicitly taken into account there are differences but ...
- What happens with the "conventional vortex solution"?
- The spin introduce a "spinor" order parameter in the Gross-Pitaevskii equation, are there new physical the effects?.

An alternative route; NCQM

NCQM means several things, e.g., if we have $\hat{H}+$ commutators,

- First possibility

$$
\begin{aligned}
{\left[x_{i}, p_{j}\right] } & =i \delta_{i j} \\
{\left[x_{i}, x_{j}\right] } & =i \theta_{i j},\left[p_{i}, p_{j}\right]=i B_{i j}
\end{aligned}
$$

where $\theta_{i j}=-\theta_{j i}, B_{i j}=-B_{j i}$ are constants matrices (Nair and Polychronakos PLB'2001).

- Second possibility

$$
\begin{align*}
{\left[x_{i}, p_{j}\right] } & =i \delta_{i j}, \\
{\left[x_{i}, x_{j}\right] } & =i \theta^{2} \epsilon_{i j k} s_{k}, \tag{2}\\
{\left[p_{i}, p_{j}\right] } & =0
\end{align*}
$$

and s_{k} is the spin operator and θ a parameter with dimensions of lenght.

- NC can be realized by using Bopp's shift (commutative variables)

$$
x_{i} \rightarrow x_{i}+\frac{\theta_{i j}}{2} p_{j}
$$

and NCQM becomes

$$
H\left(x+\frac{\theta}{2} p, p\right) \psi=i \frac{\partial \psi}{\partial t},
$$

(non-locality,)

- In the spin case one has the algebra (Snyder NR)

$$
\begin{array}{lll}
{\left[\hat{x}_{i}, \hat{x}_{j}\right]} & =i \theta^{2} \epsilon_{i j k} \hat{s}_{k}, & \\
{\left[\hat{x}_{i}, \hat{p}_{j}\right]} & =i \delta_{i j}, & {\left[\hat{p}_{i}, \hat{p}_{j}\right]=0,} \tag{3}\\
{\left[\hat{x}_{i}, \hat{s}_{j}\right]} & =i \theta \epsilon_{i j k} \hat{s}_{k}, & {\left[\hat{s}_{i}, \hat{s}_{j}\right]=i \epsilon_{i j k} \hat{s}_{k},}
\end{array}
$$

The analog of the Bopp's shift now is

$$
\begin{array}{ll}
\hat{x}_{i} & \rightarrow \hat{x}_{i}=x_{i}+\theta s_{i}, \\
\hat{p}_{i} & \rightarrow \hat{p}_{i}=p_{i}:=-\imath \partial_{i}, \tag{4}\\
\hat{s}_{i} & \rightarrow \hat{s}_{i}=s_{i}:=\frac{\sigma_{i}}{2},
\end{array}
$$

where x_{i} and p_{i} are now canonical operators satisfying the Heisenberg's algebra.

This simple observation implies that any noncommutative quantum mechanical system described by

$$
\begin{equation*}
\imath \partial_{t}|\psi(t)\rangle=\hat{H}(\hat{p}, \hat{x}, \hat{s})|\psi(t)\rangle=\left[\frac{1}{2} \hat{p}^{2}+\hat{V}(\hat{x})\right]|\psi(t)\rangle \tag{5}
\end{equation*}
$$

can equivalently be described by the commutative Schrödinger equation

$$
\begin{equation*}
\imath \partial_{t} \psi(\mathbf{x}, t)=H\left(p_{i}, x_{i}+\theta s_{i}\right) \psi(\mathbf{x}, t) \tag{6}
\end{equation*}
$$

where $\psi(\mathbf{x}, t)$ is a Pauli spinor.

An example: NC Harmonic oscillator

Hamiltonian

$$
\begin{align*}
\hat{H} & =-\frac{1}{2} \nabla^{2}+\frac{1}{2} \hat{\mathbf{x}}^{2} \\
& =-\frac{1}{2} \nabla^{2}+\frac{1}{2}(\mathbf{x}+\theta \mathbf{s})^{2} \\
& =-\frac{1}{2} \nabla^{2}+\frac{1}{2} \mathbf{x}^{2}+\theta \mathbf{s} \cdot \mathbf{x}+\frac{\theta^{2}}{2} \mathbf{s}^{2} . \tag{7}
\end{align*}
$$

dipolar interaction explicit!.
\hat{H} is solved by using SSQM methods

- Ground state has no nodes

$$
\begin{equation*}
\tilde{H}=H-E_{0}=Q_{i}^{\dagger} Q, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{i}=\frac{1}{\sqrt{2}}\left(\partial_{i}+\hat{x}_{i}\right), \quad Q_{i}^{\dagger}=\frac{1}{\sqrt{2}}\left(-\partial_{i}+\hat{x}_{i}\right) \tag{9}
\end{equation*}
$$

- Following Zanelli and J.G (PLB 1985) one find

$$
\begin{align*}
Q_{i} \rightarrow S & =Q_{i} \psi_{i}=Q_{i} \sigma_{i} \otimes \sigma_{-}=Q \otimes \sigma_{-} \tag{10}\\
Q_{i}^{\dagger} \rightarrow S^{\dagger} & =Q_{i}^{\dagger} \psi_{i}^{\dagger}=Q_{i}^{\dagger} \sigma_{i} \otimes \sigma_{+}=Q^{\dagger} \otimes \sigma_{+} \tag{11}
\end{align*}
$$

The supersymmetric Hamiltonian is

$$
\begin{equation*}
H_{s}:=\frac{1}{2}\left\{S^{\dagger}, S\right\}=\frac{1}{2} Q^{\dagger} Q \otimes \frac{1+\sigma_{3}}{2}+\frac{1}{2} Q Q^{\dagger} \otimes \frac{\mathbf{1}-\sigma_{3}}{2}, \tag{12}
\end{equation*}
$$

and this prescription obviously fulfills

$$
\begin{align*}
{\left[S, H_{s}\right] } & =0=\left[S^{\dagger}, H_{s}\right] \tag{13}\\
\{S, S\} & =0=\left\{S^{\dagger}, S^{\dagger}\right\}
\end{align*}
$$

Notice that this Hamiltonian is defined on a space of four component functions (a pair of spinors),

$$
\psi=\binom{\psi^{(1)}}{\psi^{(2)}}
$$

A straightforward calculation yields

$$
\begin{align*}
H_{s} & =\frac{1}{2}\left(-\frac{1}{2} \nabla^{2}+\frac{1}{2} \mathbf{x}^{2}+3 \theta \mathbf{x} \cdot \mathbf{s}+\frac{9}{8} \theta^{2}\right) \otimes 1_{2 \times 2}-\frac{1}{2}\left(2 \mathbf{s} \cdot \mathbf{L}+\frac{3}{2}\right) \otimes \sigma_{3}, \\
& =H^{s s}+H_{N C}, \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
H^{s s}=\frac{1}{2}\left(-\frac{1}{2} \nabla^{2}+\frac{1}{2} \mathbf{x}^{2}\right) \otimes 1_{2 \times 2}-\frac{1}{2}\left(2 \mathbf{s} \cdot \mathbf{L}+\frac{3}{2}\right) \otimes \sigma_{3}, \tag{15}
\end{equation*}
$$

is the standard supersymmetric Hamiltonian in three-dimensions for the harmonic oscillator, whereas

$$
\begin{equation*}
H_{N C}=\frac{1}{2}\left(3 \theta \mathbf{x} \cdot \mathbf{s}+\frac{9}{8} \theta^{2}\right) \otimes 1_{2 \times 2}, \tag{16}
\end{equation*}
$$

is the correction due to non-commutativity.
Actually, the term x.s is the dipole interaction mentioned above and $\frac{9}{8} \theta^{2}$ is just a correction to the ground state energy.

The ground state satisfy

$$
S \psi_{0}=0 \quad \text { or } \quad S^{\dagger} \psi_{0}=0
$$

which implies that $\psi_{0}=\binom{\Psi_{0}^{(1)}}{\mathbf{0}}$, with

$$
\begin{equation*}
Q \Psi_{0}^{(1)}=Q_{i} \sigma_{i} \Psi_{0}^{(1)}=0 . \tag{17}
\end{equation*}
$$

The general normalized solution is

$$
\begin{equation*}
\psi_{0}^{(1)}=\pi^{-\frac{3}{4}} e^{\frac{3 \theta}{2}} \tau \mathbf{k}_{1} \cdot \mathbf{x} e^{-\frac{1}{2}\left(\mathbf{x}-\frac{3 \theta}{2} \mathbf{k}_{R}\right)^{2}} \chi_{-}(\hat{\mathbf{k}}), \tag{18}
\end{equation*}
$$

with $\hat{\mathbf{k}}=\mathbf{k}_{R}+i \mathbf{k}_{\text {/ }}$ is a complex unitary vector $\left(\hat{\mathbf{k}}^{2}=1 \Rightarrow \mathbf{k}_{R}{ }^{2}-\mathbf{k}_{I}{ }^{2}=1, \mathbf{k}_{R} \cdot \mathbf{k}_{I}=0\right)$ and $\chi_{-}(\hat{\mathbf{k}})$ is a constant spinor satisfying

$$
(\hat{\mathbf{k}} \cdot \boldsymbol{\sigma}) \chi_{-}(\hat{\mathbf{k}})=-\chi_{-}(\hat{\mathbf{k}})
$$

with $\chi_{-}(\hat{\mathbf{k}})^{\dagger} \chi_{-}(\hat{\mathbf{k}})=1$

First main conclusions

- The ground state is infinitely degenerated
- The rotational symmetry is spontaneously broken
-

$$
<\mathbf{x}>_{\mathbf{k}}=\frac{3 \theta}{2} \mathbf{k}_{R}
$$

$$
<\mathbf{p}>_{\mathbf{k}}=\frac{3 \theta}{2} \mathbf{k}_{/}
$$

Bose-Einstein Condensation and NC Hartree Approach

One starting point:

$$
H=\sum_{i=1}^{N}\left(-\frac{1}{2} \nabla^{2}+u(\mathbf{r})\right)+\sum_{i>j} W\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) .
$$

where

$$
W\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)=\gamma \delta\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

and

$$
\Psi \rightarrow \text { Order Parameter }
$$

- All the bosons are in the ground state (in BE phase $\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)$)

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=\prod_{i=1}^{N} \psi\left(\mathbf{r}_{i}\right)
$$

- W becomes $(\hat{x} \rightarrow x+\theta s)$

$$
\begin{aligned}
W\left(\mathbf{r}-\mathbf{r}^{\prime}\right) & =\gamma \delta\left(\mathbf{r}-\mathbf{r}^{\prime}+\theta\left(\mathbf{s}-\mathbf{s}^{\prime}\right)\right), \\
& =\gamma \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\theta \gamma \Delta \mathbf{s} \cdot \frac{\partial}{\partial \mathbf{r}} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\mathcal{O}\left(\theta^{2}\right) .
\end{aligned}
$$

- Normalization condition

$$
\int d^{3}|\psi(\mathbf{r})|^{2}=N
$$

- Tiny depletion

$$
\int d^{3} r \nabla n=0,
$$

with $n=|\phi|^{2}$.

Energy and Generalized Gross-Pitaevski Equations

Computing

$$
\delta E=\delta\left(\frac{\langle\Psi| \neg \hat{H} \mid \Psi>}{\langle\Psi| \Psi>}\right)=0,
$$

+ Lagrange multipliers

$$
E=N\left(E_{G P}+E_{C}\right)+\mathcal{O}\left(\theta^{2}\right),
$$

where $E_{G P}$ is the conventional Gross-Pitaevski term and

$$
\begin{aligned}
E_{C} & =\theta \omega^{2} \int d^{3} r \mathbf{r} \cdot \psi^{*}(\mathbf{r}) \mathbf{s} \psi(\mathbf{r})-\gamma \theta \int d^{3} r \nabla n \cdot\left(\psi^{*}(\mathbf{r}) \mathbf{s} \psi(\mathbf{r})\right) \\
& \approx \theta \omega^{2} \int d^{3} r \psi^{*}(\mathbf{r}) \mathbf{r} \cdot \mathbf{s} \psi(\mathbf{r})+d \cdot c+\mathcal{O}\left(\theta^{2}\right)
\end{aligned}
$$

Spin and Vortices

The Generalized Gross-Pitaevski Equations are straightforward for $s=1$ and axial symmetry

$$
\psi(\mathbf{r})=\left(\begin{array}{l}
\phi_{1}(\rho, z) e^{i q_{1} \varphi} \tag{19}\\
\phi_{0}(\rho, z) e^{i q_{0} \varphi} \\
\phi_{-1}(\rho, z) e^{i q_{-1} \varphi}
\end{array}\right)
$$

where q_{0} and $q_{ \pm}$are winding numbers imply

$$
\begin{aligned}
& {\left[-\frac{1}{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{\partial^{2}}{\partial z^{2}}\right)+\frac{q_{0}^{2}}{2 \rho^{2}}+\frac{1}{2} \omega^{2}\left(\rho^{2}+z^{2}\right)+g \phi^{2}\right] \phi_{0}=\mu \phi_{0},} \\
& {\left[-\frac{1}{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{\partial^{2}}{\partial z^{2}}\right)+\frac{q_{ \pm}^{2}}{2 \rho^{2}}+\frac{1}{2} \omega^{2}\left(\rho^{2}+(z \pm \theta)^{2}\right)+g \phi^{2}\right] \phi_{ \pm}=\mu \phi}
\end{aligned}
$$

and μ chemical potential.

Partial "Semi" conclusions

- NC can simulate physical effects (Landau)
- Nontrivial examples of QM (spontaneous rotational symmetry ...probably nontrivial fermionic systems)
- if $\phi^{2} \approx \phi_{0}^{2}$ in first equation and son on \rightarrow three independents vortices
- However stil we need numerical simulations and explain basic physics; vortex-vortex interaction $\neq 0$?,

